Development of dry mix mortars for floor elements

dc.citation.epage31
dc.citation.issue1
dc.citation.journalTitleТеорія і практика будівництва
dc.citation.spage25
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМельник, А. Я.
dc.contributor.authorПозняк, О. Р.
dc.contributor.authorМарущак, У. Д.
dc.contributor.authorMelnyk, Andriy
dc.contributor.authorPozniak, Oksana
dc.contributor.authorMarushchak, Uliana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-23T06:11:56Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractСухі будівельні суміші все ширше використовують у будівельних проєктах для здійснення будівельних робіт під час нового будівництва, реконструкції та ремонту. До переваг сухих будівельних сумішей порівняно з комерційними будівельними розчинами належать мінімум кінцевих технологічних операцій для приготування робочого розчину, економія дорогого та енергоємного портландцементу за рахунок використання пластифікаторів та водоутримувальних добавок, стабільність складів сухих будівельних сумішей у результаті точного дозування компонентів і ефективного їх змішування, підвищення продуктивності праці за рахунок поліпшення пластичних властивостей готових розчинів, зниження транспортних витрат. Для виконання робіт із вирівнювання підлогової поверхні для влаштування оздоблювального шару під час нового будівництва та ремонтів використовують сухі будівельні суміші для влаштування підлог, які повинні забезпечити необхідну міцність, довговічність, рівність поверхні стяжки. У статті подано результати із розроблення складів будівельних сухих сумішей модифікованих для влаштування стяжок підлог. Здійснено оптимізацію зернового складу дрібних заповнювачів та карбонатного наповнювача, що забезпечує максимальну щільність упакування зерен у суміші. Показано, що у разі використання суміші заповнювачів на наповнювачах оптимізованого складу та введенні суперпластифікатора у кількості 0,1 мас. % досягається необхідна рухомість розчинової суміші для влаштування стяжки машинним способом. З метою мінімізації витрати портландцементу досліджено вплив кількості в’яжучого на рухомість та фізико-механічні властивості розчинів. Встановлено, що за вмісту портландцементу 26 % досягаються показники міцності затверділого розчину 5,1 та 15,3 МПа через 3 та 28 діб відповідно, а також показники усадки 0,65 мм/м, що задовольняє вимоги чинного стандарту.
dc.description.abstractDry mix mortars are widely used in construction projects for the implementation of construction works in new construction, reconstruction, and repair. The improvement of properties of dry mix mortars for the installation of floor screeds is relevant. The purpose of such mortars is to equalize the differences in the thickness of the floor surface, to create an intermediate layer characterized by the necessary strength, durability, and even surface with the possibility of decoration with various types of flooring. A step-by-step design of the composition of dry mix mortar for the installation of floor screeds was carried out. The ratio of fine aggregates and limestone filler was optimized according to the maximum packing density criterion, the required amount of plasticizer was selected according to the consistency index of the fresh mortar, and the minimum amount of Portland cement was selected to ensure the required strength.
dc.format.extent25-31
dc.format.pages7
dc.identifier.citationMelnyk A. Development of dry mix mortars for floor elements / Andriy Melnyk, Oksana Pozniak, Uliana Marushchak // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 25–31.
dc.identifier.citationenMelnyk A. Development of dry mix mortars for floor elements / Andriy Melnyk, Oksana Pozniak, Uliana Marushchak // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 25–31.
dc.identifier.doidoi.org/10.23939/jtbp2024.01.025
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111475
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія і практика будівництва, 1 (6), 2024
dc.relation.ispartofTheory and Building Practice, 1 (6), 2024
dc.relation.referencesDry Mix Mortar Market Overview https://www.industryarc.com/Research/Dry-Mix-Mortar-Market-Research-503183.
dc.relation.referencesEurope Dry-Mix Mortar Market Size & Share Analysis – Growth Trends & Forecasts (2024–2029). https://www.mordorintelligence.com/industry-reports/europe-dry-mix-mortar-market.
dc.relation.referencesOficijnyj sajt Derzhavnoi’ sluzhby statystyky Ukrai’ny [The official site of the State Statistics Service of Ukraine]. ukrstat.gov.ua. Retrieved from http://www.ukrstat.gov.ua (in Ukrainian).
dc.relation.referencesPoluha, V., Zolotarova, O., & Komakha, O. (2020). Cement dry building mixtures in Ukraine: market research. Commodities and markets, 1, 16–24. https://doi.org/10.31617/tr.knute.2020(33)02.
dc.relation.referencesKwan, A. K. H., Wong, V., & Fung, W. W. S. (2015). A 3-parameter packing density model for angular rock aggregate particles. Powder Technology, 274, 154–162. https://doi.org/10.1016/j.powtec.2014.12.054.
dc.relation.referencesCheng, Y., Zhu, H., Zhang, S., Wu, H., Cong, J., & Luo, Y. (2023). Experimental Study on Preparation of Dry-Mixed Mortar from Coal Gangue. Coatings, 13, 518. https://doi.org/10.3390/coatings13030518.
dc.relation.referencesLeopolder, F. (2010). The global drymix mortar industry (Part 1). ZKG INTERNATIONAL, 63, 4. https://www.researchgate.net/publication/266874980.
dc.relation.referencesCzernik, S., Marcinek, M., Michalowski, B., Piasecki, M., Tomaszewska, J., & Michalak, J. (2020). Environmental Footprint of Cementitious Adhesives-Components of ETICS. Sustainability, 1, 8998. DOI: 10.3390/su12218998.
dc.relation.referencesSanytsky, M., Marushchak, U., Olevych, Y., & Novytskyi, Y. (2020). Nano-modified Ultra-rapid Hardening Portland Cement Compositions for High Strength Concretes. Lecture Notes in Civil Engineering, 47, 392–399. DOI: 10.1007/978-3-030-27011-7_50.
dc.relation.referencesHan, V., Ros, S., & Shima, H. (2013). Effects of Sand Content, Superplasticizer Dosage, and Mixing Time on Compressive Strength of Mortar. ACI Materials Journal, 110, 23–31. https://www.researchgate.net/publication/234841096.
dc.relation.referencesSydor, N., Marushchak, U., Braichenko, S., & Rusyn, B. (2021). Development of component composition of engineered cementitious composites. Lecture Notes in Civil Engineering, 100, 459–465. DOI:10.1007/978-3-030-57340-9_56.
dc.relation.referencesStechshyn, M., Sanytsky, M., & Poznyak, O. (2015). Durability properties of high volume fly ash self compacting fiber reinforced concretes. Eastern-European Journal of Enterprise Technologies, 3 (11), 49–53. DOI: https://doi.org/10.15587/1729-4061.2015.44246.
dc.relation.referencesParashchuk, L., Kochubei, V., Novosad, P., Seredyuk, B., & Hamarnike, A. (2020). Modified fine-grained concrete for floor heating system. French-Ukrainian journal of chemistry, 08, 01, 133–141. https://doi.org/10.17721/fujcV8I1P133-141.
dc.relation.referencesSanytsky, M., Kropyvnytska, T., Heviuk, I., & Usherov-Marshak, A. (2020). Performance of multicomponent Portland cements containing granulated blast furnace slag, zeolite, and limestone. Cement, Wapno, Beton, 2020(5), 416–427. DOI: https://doi.org/10.32047/CWB.2020.25.5.7.
dc.relation.referencesRudenko, I., Runova, R., Konstantynovskyi, O., & Omelchuk, V. (2016). Modification of dry-mix mortars based on alkaline cements. 2-nd International Conference on the Chemistry of Construction MaterialsAt. https://www.researchgate.net/publication/312378276_Modification_of_drymix_mortars_based_on_alkaline_cements.
dc.relation.referencesMoskalova, K., Aniskin, A., Orešković, M. & Kovač, Ž. (2023). Enhancing dry mix mortar strength with natural fillers and polymers. Technobius, 3 (2), 0039. DOI: 10.54355/tbus/3.2.2023.0039.
dc.relation.referencesLei, L., & Zhang, L. (2022). Synthesis and performance of a non-air entraining polycarboxylate superplasticizer. Cement and Concrete Research, 159, 106853. https://doi.org/10.1016/j.cemconres.2022.106853.
dc.relation.referencesShunxiang, W., Guofang, Z., Zhaojia W., Tianyong, H. & Peiming, W. (2023). Effect of defoaming agent on the properties of cement mortars with hydroxyethyl methyl cellulose through adjusting air content gradient. Cement and Concrete Composites, 139, 105024 https://doi.org/10.1016/j.cemconcomp.2023.105024.
dc.relation.referencesLi, H., Xue, Z., Liang, H., Guo, Y., Liang, G., Ni, D., & Yang Z. (2021). Influence of defoaming agents on mechanical performances and pore characteristics of Portland cement paste/mortar in presence of EVA dispersible powder. Journal of Building Engineering, 41, 102780. https://doi.org/10.1016/j.jobe.2021.102780.
dc.relation.referencesKovalenko, Y., Tokarchuk, V., & Poliuha, V. (2020). The effect of methyl hydroxyethyl cellulose on the cement matrix properties. Eastern-European Journal of Enterprise Technologies, 3 (6), 28–33. DOI: 10.15587/1729-4061.2020.205347.
dc.relation.referencesBülichen, D., Kainz, J., & Plank J. (2012). Working mechanism of methyl hydroxyethyl cellulose (MHEC) as water retention agent. Cement and Concrete Research, 42, 7, 953–959. https://doi.org/10.1016/j.cemconres.2012.03.016.
dc.relation.referencesShi, C., Zou, X., & Wang, P. (2020). Influences of EVA and methylcellulose on mechanical properties of Portland cement-calcium aluminate cement-gypsum ternary repair mortar. Construction and Building Materials, 241, 118035. https://doi.org/10.1016/j.conbuildmat.2020.118035.
dc.relation.referencesBalagopal, V., Jeslin P. Raju, Aneesh A. Kumar, Megha Sajeev, & Veena, P. (2023). Effect of ethylene vinyl acetate on cement mortar – A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.692.
dc.relation.referencesTayebani, B., Said, A., & Memari, A. (2023). Less carbon producing sustainable concrete from environmental and performance perspectives: A review. Construction and Building Materials, 404, 2023, 133234, 0950–0618. https://doi.org/10.1016/j.conbuildmat.2023.133234
dc.relation.referencesWang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H., & Ou, Z. (2018). A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181, 659–672. https://doi.org/10.1016/j.conbuildmat.2018.06.075.
dc.relation.referencesSanytsky, M., Kropyvnytska, T., & He’yuk, I. (2019). Shvydkotverdnuchi portlandtsementy z dobavkoyu vapnyaku. Budivel’ni materialy ta vyroby, 1–2 (in Ukraine). DOI: 10.48076/2413-9890.2019-100-02.
dc.relation.referencesPanesar, D.K., & Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials, 251, 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866.
dc.relation.referencesenDry Mix Mortar Market Overview https://www.industryarc.com/Research/Dry-Mix-Mortar-Market-Research-503183.
dc.relation.referencesenEurope Dry-Mix Mortar Market Size & Share Analysis – Growth Trends & Forecasts (2024–2029). https://www.mordorintelligence.com/industry-reports/europe-dry-mix-mortar-market.
dc.relation.referencesenOficijnyj sajt Derzhavnoi’ sluzhby statystyky Ukrai’ny [The official site of the State Statistics Service of Ukraine]. ukrstat.gov.ua. Retrieved from http://www.ukrstat.gov.ua (in Ukrainian).
dc.relation.referencesenPoluha, V., Zolotarova, O., & Komakha, O. (2020). Cement dry building mixtures in Ukraine: market research. Commodities and markets, 1, 16–24. https://doi.org/10.31617/tr.knute.2020(33)02.
dc.relation.referencesenKwan, A. K. H., Wong, V., & Fung, W. W. S. (2015). A 3-parameter packing density model for angular rock aggregate particles. Powder Technology, 274, 154–162. https://doi.org/10.1016/j.powtec.2014.12.054.
dc.relation.referencesenCheng, Y., Zhu, H., Zhang, S., Wu, H., Cong, J., & Luo, Y. (2023). Experimental Study on Preparation of Dry-Mixed Mortar from Coal Gangue. Coatings, 13, 518. https://doi.org/10.3390/coatings13030518.
dc.relation.referencesenLeopolder, F. (2010). The global drymix mortar industry (Part 1). ZKG INTERNATIONAL, 63, 4. https://www.researchgate.net/publication/266874980.
dc.relation.referencesenCzernik, S., Marcinek, M., Michalowski, B., Piasecki, M., Tomaszewska, J., & Michalak, J. (2020). Environmental Footprint of Cementitious Adhesives-Components of ETICS. Sustainability, 1, 8998. DOI: 10.3390/su12218998.
dc.relation.referencesenSanytsky, M., Marushchak, U., Olevych, Y., & Novytskyi, Y. (2020). Nano-modified Ultra-rapid Hardening Portland Cement Compositions for High Strength Concretes. Lecture Notes in Civil Engineering, 47, 392–399. DOI: 10.1007/978-3-030-27011-7_50.
dc.relation.referencesenHan, V., Ros, S., & Shima, H. (2013). Effects of Sand Content, Superplasticizer Dosage, and Mixing Time on Compressive Strength of Mortar. ACI Materials Journal, 110, 23–31. https://www.researchgate.net/publication/234841096.
dc.relation.referencesenSydor, N., Marushchak, U., Braichenko, S., & Rusyn, B. (2021). Development of component composition of engineered cementitious composites. Lecture Notes in Civil Engineering, 100, 459–465. DOI:10.1007/978-3-030-57340-9_56.
dc.relation.referencesenStechshyn, M., Sanytsky, M., & Poznyak, O. (2015). Durability properties of high volume fly ash self compacting fiber reinforced concretes. Eastern-European Journal of Enterprise Technologies, 3 (11), 49–53. DOI: https://doi.org/10.15587/1729-4061.2015.44246.
dc.relation.referencesenParashchuk, L., Kochubei, V., Novosad, P., Seredyuk, B., & Hamarnike, A. (2020). Modified fine-grained concrete for floor heating system. French-Ukrainian journal of chemistry, 08, 01, 133–141. https://doi.org/10.17721/fujcV8I1P133-141.
dc.relation.referencesenSanytsky, M., Kropyvnytska, T., Heviuk, I., & Usherov-Marshak, A. (2020). Performance of multicomponent Portland cements containing granulated blast furnace slag, zeolite, and limestone. Cement, Wapno, Beton, 2020(5), 416–427. DOI: https://doi.org/10.32047/CWB.2020.25.5.7.
dc.relation.referencesenRudenko, I., Runova, R., Konstantynovskyi, O., & Omelchuk, V. (2016). Modification of dry-mix mortars based on alkaline cements. 2-nd International Conference on the Chemistry of Construction MaterialsAt. https://www.researchgate.net/publication/312378276_Modification_of_drymix_mortars_based_on_alkaline_cements.
dc.relation.referencesenMoskalova, K., Aniskin, A., Orešković, M. & Kovač, Ž. (2023). Enhancing dry mix mortar strength with natural fillers and polymers. Technobius, 3 (2), 0039. DOI: 10.54355/tbus/3.2.2023.0039.
dc.relation.referencesenLei, L., & Zhang, L. (2022). Synthesis and performance of a non-air entraining polycarboxylate superplasticizer. Cement and Concrete Research, 159, 106853. https://doi.org/10.1016/j.cemconres.2022.106853.
dc.relation.referencesenShunxiang, W., Guofang, Z., Zhaojia W., Tianyong, H. & Peiming, W. (2023). Effect of defoaming agent on the properties of cement mortars with hydroxyethyl methyl cellulose through adjusting air content gradient. Cement and Concrete Composites, 139, 105024 https://doi.org/10.1016/j.cemconcomp.2023.105024.
dc.relation.referencesenLi, H., Xue, Z., Liang, H., Guo, Y., Liang, G., Ni, D., & Yang Z. (2021). Influence of defoaming agents on mechanical performances and pore characteristics of Portland cement paste/mortar in presence of EVA dispersible powder. Journal of Building Engineering, 41, 102780. https://doi.org/10.1016/j.jobe.2021.102780.
dc.relation.referencesenKovalenko, Y., Tokarchuk, V., & Poliuha, V. (2020). The effect of methyl hydroxyethyl cellulose on the cement matrix properties. Eastern-European Journal of Enterprise Technologies, 3 (6), 28–33. DOI: 10.15587/1729-4061.2020.205347.
dc.relation.referencesenBülichen, D., Kainz, J., & Plank J. (2012). Working mechanism of methyl hydroxyethyl cellulose (MHEC) as water retention agent. Cement and Concrete Research, 42, 7, 953–959. https://doi.org/10.1016/j.cemconres.2012.03.016.
dc.relation.referencesenShi, C., Zou, X., & Wang, P. (2020). Influences of EVA and methylcellulose on mechanical properties of Portland cement-calcium aluminate cement-gypsum ternary repair mortar. Construction and Building Materials, 241, 118035. https://doi.org/10.1016/j.conbuildmat.2020.118035.
dc.relation.referencesenBalagopal, V., Jeslin P. Raju, Aneesh A. Kumar, Megha Sajeev, & Veena, P. (2023). Effect of ethylene vinyl acetate on cement mortar – A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.692.
dc.relation.referencesenTayebani, B., Said, A., & Memari, A. (2023). Less carbon producing sustainable concrete from environmental and performance perspectives: A review. Construction and Building Materials, 404, 2023, 133234, 0950–0618. https://doi.org/10.1016/j.conbuildmat.2023.133234
dc.relation.referencesenWang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H., & Ou, Z. (2018). A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181, 659–672. https://doi.org/10.1016/j.conbuildmat.2018.06.075.
dc.relation.referencesenSanytsky, M., Kropyvnytska, T., & He’yuk, I. (2019). Shvydkotverdnuchi portlandtsementy z dobavkoyu vapnyaku. Budivel’ni materialy ta vyroby, 1–2 (in Ukraine). DOI: 10.48076/2413-9890.2019-100-02.
dc.relation.referencesenPanesar, D.K., & Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials, 251, 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866.
dc.relation.urihttps://www.industryarc.com/Research/Dry-Mix-Mortar-Market-Research-503183
dc.relation.urihttps://www.mordorintelligence.com/industry-reports/europe-dry-mix-mortar-market
dc.relation.urihttp://www.ukrstat.gov.ua
dc.relation.urihttps://doi.org/10.31617/tr.knute.2020(33)02
dc.relation.urihttps://doi.org/10.1016/j.powtec.2014.12.054
dc.relation.urihttps://doi.org/10.3390/coatings13030518
dc.relation.urihttps://www.researchgate.net/publication/266874980
dc.relation.urihttps://www.researchgate.net/publication/234841096
dc.relation.urihttps://doi.org/10.15587/1729-4061.2015.44246
dc.relation.urihttps://doi.org/10.17721/fujcV8I1P133-141
dc.relation.urihttps://doi.org/10.32047/CWB.2020.25.5.7
dc.relation.urihttps://www.researchgate.net/publication/312378276_Modification_of_drymix_mortars_based_on_alkaline_cements
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2022.106853
dc.relation.urihttps://doi.org/10.1016/j.cemconcomp.2023.105024
dc.relation.urihttps://doi.org/10.1016/j.jobe.2021.102780
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2012.03.016
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2020.118035
dc.relation.urihttps://doi.org/10.1016/j.matpr.2023.03.692
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2023.133234
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.06.075
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2020.118866
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Melnyk A., Pozniak O., Marushchak U., 2024
dc.subjectсуха будівельна суміш
dc.subjectстяжка
dc.subjectщільність упаковки
dc.subjectрухомість
dc.subjectміцність на стиск
dc.subjectусадка
dc.subjectdry mix mortar
dc.subjectfloor screed
dc.subjectpacking density criterion
dc.subjectconsistency
dc.subjectcompressive strength
dc.subjectshrinkage
dc.titleDevelopment of dry mix mortars for floor elements
dc.title.alternativeРозроблення сумішей будівельних сухих модифікованих для влаштування елементів підлоги
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n1_Melnyk_A-Development_of_dry_mix_mortars_25-31.pdf
Size:
329.79 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n1_Melnyk_A-Development_of_dry_mix_mortars_25-31__COVER.png
Size:
481.04 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: