Environmental assessment of recycled glass aggregates in reinforced concrete
dc.citation.epage | 101 | |
dc.citation.issue | 1 | |
dc.citation.spage | 92 | |
dc.contributor.affiliation | Кінгстонський університет | |
dc.contributor.affiliation | Kingston University | |
dc.contributor.author | Генган, Г. | |
dc.contributor.author | К’ю, Х. | |
dc.contributor.author | Gengan, G. | |
dc.contributor.author | Kew, H. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-05-23T07:59:29Z | |
dc.date.available | 2024-05-23T07:59:29Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Сталий розвиток бетонної промисловості є під загрозою через використання природних ресурсів, що негативно впливає на навколишнє середовище, включаючи вуглецевий слід. Необхідний швидкий перехід до сталого мислення, враховуючи надзвичайну ситуацію, спричинену впливом людини на зміни клімату. Бетон з добавкою відходів рециклінгу скла викликав зацікавленість у будівельній галузі завдяки своєму екологічному підходу. Розглянуто екологічні наслідки часткової заміни природних заповнювачів у бетоні заповнювачем, одержаним із рециклінгу скляних відходів, із різним їх відсотковим вмістом, а саме 10, 25, 50 і 75 мас. %, які потім порівнюються з контрольованим складом бетону. Оцінку життєвого циклу (LCA) було проведено через GaBi V9, освітній пакет, наданий Кінгстонському університету (м. Лондон, Великобританія). Програмне забезпечення включало бази даних, які відповідали технології “від колиски до могили”, а також IS0 14040. Результати досліджень свідчать, що 287 кг CO2Eq. генерується під час виробництва звичайного контрольного бетону, тоді як бетон із добавкою 20 мас. % відходів рециклінгу скла призводить до зменшення потенціалу глобального потепління, який становить 258 кг CO2Eq. Як видно з результатів досліджень, бетон M25 містить 1,68 кг CFC-11Eq. порівняно з 1,85 кг CFC-11Eq. для бетону з природного заповнювача. Бетони М10 і М25 з добавкою 10 та 25 мас. % відходів рециклінгу скла мали незначний вплив на показники зміни клімату, респіраторних органічних речовин та підкислення. Незважаючи на те, що бетон з добавкою відходів рециклінгу скла характеризується кількома нижчими показниками впливу на навколишнє середовище, існує потреба у покращенні деяких факторів, а саме підкислення та респіраторних органічних речовин. | |
dc.description.abstract | The sustainability of the concrete industry is in jeopardy due to the use of natural resources which impacts the environment. A swift shift towards sustainable thinking is required considering the emergency triggered by human activity on the climate. Glass concrete (GC) has sparked curiosity of the construction industry owing to its environmentally friendly approach. This article examines the environmental implications of partially replacing natural aggregates in concrete with recycled glass aggregate at various percentages i. e. 10 %, 25 %, 50 %, and 75 % which is then compared to controlled concrete specimen (CC). The assessment indicated 287 kgCO2Eq were generated for control concrete (CC), whereas concrete with 20 % glass aggregate (GA) resulted in 258 kg CO2Eq. global warming potential. Likewise, M25 concrete was reported to have 1.68 kg CFC-11Eq compared to 1.85 kg CFC-11Eq for natural aggregate concrete. Even though glass concrete demonstrates lower values in several environmental effects, there is need for improvement in impact categories including acidification and respiratory organics. | |
dc.format.extent | 92-101 | |
dc.format.pages | 10 | |
dc.identifier.citation | Gengan G. Environmental assessment of recycled glass aggregates in reinforced concrete / G. Gengan, H. Kew // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 92–101. | |
dc.identifier.citationen | Gengan G. Environmental assessment of recycled glass aggregates in reinforced concrete / G. Gengan, H. Kew // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 92–101. | |
dc.identifier.doi | doi.org/10.23939/jtbp2023.01.092 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/62067 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 1 (5), 2023 | |
dc.relation.references | A.Soliman, N., & ArezkiTagnit-Hamou. (2017). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243-252. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.187 | |
dc.relation.references | Akan, M. Ö., G.Dhavale, D., & Sarkis, J. (2017). Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. Journal of Cleaner Production, 167, 1195-1207. DOI: https://doi.org/10.1016/j.jclepro.2017.07.225 | |
dc.relation.references | Alyousef, R., Ali, B., Mohammed, A., Kurda, R., Alabduljabbar, H., & Riaz, S. (2021). Evaluation of Mechanical and Permeability Characteristics of Microfiber-Reinforced Recycled Aggregate Concrete with Different Potential Waste Mineral Admixtures. Materials, 14(20), 5933. DOI: https://doi.org/10.3390%2Fma14205933 | |
dc.relation.references | Bianco, I., Tomos, B. A., & Vinai, R. (2021). Analysis of the environmental impacts of alkali-activated concrete produced with waste glass-derived silicate activator - A LCA study. Journal of Cleaner Production, 316, 128383. DOI: https://doi.org/10.1016/j.jclepro.2021.128383 | |
dc.relation.references | Casini, M. (2022). Holistic building design approach. In Construction 4.0 Advanced Technology, Tools and Materials for the Digital Transformation of the Construction Industry (pp. 61-149). Sawston: Woodhead Publishing Series in Civil and Structural Engineering. DOI: http://dx.doi.org/10.1201/9781003106944 | |
dc.relation.references | Castro, S. d., & Brito, J. d. (2013). Evaluation of the durability of concrete made with crushed glass aggregates. Journal of Cleaner Production, 41, 7-14. DOI: https://doi.org/10.1016/j.jclepro.2012.09.021 | |
dc.relation.references | Environment, U., L.Scrivener, K., M.John, V., & M.Gartner, E. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry☆. Cement and Concrete Research, 114, 2-26. DOI: https://doi.org/10.1016/j.cemconres.2018.03.015 | |
dc.relation.references | Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48. DOI: https://doi.org/10.1016/j.cemconcomp.2014.03.005 | |
dc.relation.references | Li, Y., Han, M., Liu, S., & Chen, G. (2019). Energy consumption and greenhouse gas emissions by buildings: A multi-scale perspective. Building and Environment, 151, 240-250. DOI: http://dx.doi.org/10.1016/j.buildenv.2018.11.003 | |
dc.relation.references | Limbachiya, M., Leelawat, T., & Dhir, R. (2000). Use of recycled concrete aggregate in high-strength concrete. Materials and Structures, 33, 547-580. DOI: https://doi.org/10.1007/BF02480538 | |
dc.relation.references | M.Manjunatha, Malingaraya, S., H.G.Mounika, & Ravi, K. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today : Proceedings, 47(13), 3637-3644. DOI: https://doi.org/10.1016/j.jmrt.2022.03.008 | |
dc.relation.references | Manzoor, A., kumar, E. Y., & Sharma, L. (2022). Comparison of partially replaced concrete by waste glass with control concrete. Materials Today: Proceedings, In Press. DOI: http://dx.doi.org/10.1016/j.matpr.2022.09.092 | |
dc.relation.references | Nedeljković, M., Visser, J., Šavija, B., Valcke, S., & Schlangen, E. (2021). Use of fine recycled concrete aggregates in concrete: A critical review. Journal of Building Engineering, 38, 102196. DOI: https://doi.org/10.1016/j.jobe.2021.102196 | |
dc.relation.references | Ni, S., Liu, H., Li, Q., Quan, H., Gheibi, M., M.Fathollahi-Fard, A., & Tian, G. (2022). Assessment of the engineering properties, carbon dioxide emission and economic of biomass recycled aggregate concrete: A novel approach for building green concretes. Journal of Cleaner Production, 365, 132780. DOI: https://doi.org/10.1016/j.jclepro.2022.132780 | |
dc.relation.references | Schmitz, A., Kamiński, J., Scalet, B. M., & Soria, A. (2011). Energy consumption and CO2 emissions of the European glass industry. Energy Policy, 39(1), 142-155. DOI: http://dx.doi.org/10.1016/j.enpol.2010.09.022 | |
dc.relation.references | Villalba, G., Liu, Y., Schroder, H., & Ayres, R. U. (2008). Global Phosphorus Flows in the Industrial Economy From a Production Perspective. Journal of Industrial Ecology, 12(4), 557-569. DOI: https://doi.org/10.1111/j.1530-9290.2008.00050.x | |
dc.relation.references | W.Griffin, P., P.Hammond, G., & C.McKenna, R. (2021). Industrial energy use and decarbonisation in the glass sector: A UK perspective. Advances in Applied Energy, 3, 100037. DOI: https://doi.org/10.1016/j.adapen.2021.100037 | |
dc.relation.references | Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115-125. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.078 | |
dc.relation.references | Zhu, Y., Li, Q., Xu, P., Wang, X., & Kou, S. (2019). Properties of Concrete Prepared with Recycled Aggregates Treated by Bio-Deposition Adding Oxygen Release Compound. Materials, 12(13), 2147. DOI: https://doi.org/10.3390/ma12132147 | |
dc.relation.referencesen | A.Soliman, N., & ArezkiTagnit-Hamou. (2017). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243-252. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.187 | |
dc.relation.referencesen | Akan, M. Ö., G.Dhavale, D., & Sarkis, J. (2017). Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. Journal of Cleaner Production, 167, 1195-1207. DOI: https://doi.org/10.1016/j.jclepro.2017.07.225 | |
dc.relation.referencesen | Alyousef, R., Ali, B., Mohammed, A., Kurda, R., Alabduljabbar, H., & Riaz, S. (2021). Evaluation of Mechanical and Permeability Characteristics of Microfiber-Reinforced Recycled Aggregate Concrete with Different Potential Waste Mineral Admixtures. Materials, 14(20), 5933. DOI: https://doi.org/10.3390%2Fma14205933 | |
dc.relation.referencesen | Bianco, I., Tomos, B. A., & Vinai, R. (2021). Analysis of the environmental impacts of alkali-activated concrete produced with waste glass-derived silicate activator - A LCA study. Journal of Cleaner Production, 316, 128383. DOI: https://doi.org/10.1016/j.jclepro.2021.128383 | |
dc.relation.referencesen | Casini, M. (2022). Holistic building design approach. In Construction 4.0 Advanced Technology, Tools and Materials for the Digital Transformation of the Construction Industry (pp. 61-149). Sawston: Woodhead Publishing Series in Civil and Structural Engineering. DOI: http://dx.doi.org/10.1201/9781003106944 | |
dc.relation.referencesen | Castro, S. d., & Brito, J. d. (2013). Evaluation of the durability of concrete made with crushed glass aggregates. Journal of Cleaner Production, 41, 7-14. DOI: https://doi.org/10.1016/j.jclepro.2012.09.021 | |
dc.relation.referencesen | Environment, U., L.Scrivener, K., M.John, V., & M.Gartner, E. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry☆. Cement and Concrete Research, 114, 2-26. DOI: https://doi.org/10.1016/j.cemconres.2018.03.015 | |
dc.relation.referencesen | Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48. DOI: https://doi.org/10.1016/j.cemconcomp.2014.03.005 | |
dc.relation.referencesen | Li, Y., Han, M., Liu, S., & Chen, G. (2019). Energy consumption and greenhouse gas emissions by buildings: A multi-scale perspective. Building and Environment, 151, 240-250. DOI: http://dx.doi.org/10.1016/j.buildenv.2018.11.003 | |
dc.relation.referencesen | Limbachiya, M., Leelawat, T., & Dhir, R. (2000). Use of recycled concrete aggregate in high-strength concrete. Materials and Structures, 33, 547-580. DOI: https://doi.org/10.1007/BF02480538 | |
dc.relation.referencesen | M.Manjunatha, Malingaraya, S., H.G.Mounika, & Ravi, K. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today : Proceedings, 47(13), 3637-3644. DOI: https://doi.org/10.1016/j.jmrt.2022.03.008 | |
dc.relation.referencesen | Manzoor, A., kumar, E. Y., & Sharma, L. (2022). Comparison of partially replaced concrete by waste glass with control concrete. Materials Today: Proceedings, In Press. DOI: http://dx.doi.org/10.1016/j.matpr.2022.09.092 | |
dc.relation.referencesen | Nedeljković, M., Visser, J., Šavija, B., Valcke, S., & Schlangen, E. (2021). Use of fine recycled concrete aggregates in concrete: A critical review. Journal of Building Engineering, 38, 102196. DOI: https://doi.org/10.1016/j.jobe.2021.102196 | |
dc.relation.referencesen | Ni, S., Liu, H., Li, Q., Quan, H., Gheibi, M., M.Fathollahi-Fard, A., & Tian, G. (2022). Assessment of the engineering properties, carbon dioxide emission and economic of biomass recycled aggregate concrete: A novel approach for building green concretes. Journal of Cleaner Production, 365, 132780. DOI: https://doi.org/10.1016/j.jclepro.2022.132780 | |
dc.relation.referencesen | Schmitz, A., Kamiński, J., Scalet, B. M., & Soria, A. (2011). Energy consumption and CO2 emissions of the European glass industry. Energy Policy, 39(1), 142-155. DOI: http://dx.doi.org/10.1016/j.enpol.2010.09.022 | |
dc.relation.referencesen | Villalba, G., Liu, Y., Schroder, H., & Ayres, R. U. (2008). Global Phosphorus Flows in the Industrial Economy From a Production Perspective. Journal of Industrial Ecology, 12(4), 557-569. DOI: https://doi.org/10.1111/j.1530-9290.2008.00050.x | |
dc.relation.referencesen | W.Griffin, P., P.Hammond, G., & C.McKenna, R. (2021). Industrial energy use and decarbonisation in the glass sector: A UK perspective. Advances in Applied Energy, 3, 100037. DOI: https://doi.org/10.1016/j.adapen.2021.100037 | |
dc.relation.referencesen | Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115-125. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.078 | |
dc.relation.referencesen | Zhu, Y., Li, Q., Xu, P., Wang, X., & Kou, S. (2019). Properties of Concrete Prepared with Recycled Aggregates Treated by Bio-Deposition Adding Oxygen Release Compound. Materials, 12(13), 2147. DOI: https://doi.org/10.3390/ma12132147 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2017.03.187 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2017.07.225 | |
dc.relation.uri | https://doi.org/10.3390%2Fma14205933 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2021.128383 | |
dc.relation.uri | http://dx.doi.org/10.1201/9781003106944 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2012.09.021 | |
dc.relation.uri | https://doi.org/10.1016/j.cemconres.2018.03.015 | |
dc.relation.uri | https://doi.org/10.1016/j.cemconcomp.2014.03.005 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.buildenv.2018.11.003 | |
dc.relation.uri | https://doi.org/10.1007/BF02480538 | |
dc.relation.uri | https://doi.org/10.1016/j.jmrt.2022.03.008 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.matpr.2022.09.092 | |
dc.relation.uri | https://doi.org/10.1016/j.jobe.2021.102196 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2022.132780 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.enpol.2010.09.022 | |
dc.relation.uri | https://doi.org/10.1111/j.1530-9290.2008.00050.x | |
dc.relation.uri | https://doi.org/10.1016/j.adapen.2021.100037 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2019.03.078 | |
dc.relation.uri | https://doi.org/10.3390/ma12132147 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Gengan G., Kew H., 2023 | |
dc.subject | бетон | |
dc.subject | скляні заповнювачі | |
dc.subject | вплив на навколишнє середовище | |
dc.subject | оцінка життєвого циклу та вуглецевий слід | |
dc.subject | Concrete | |
dc.subject | Glass aggregates | |
dc.subject | Environmental impact | |
dc.subject | Life cycle assessment and Carbon footprint | |
dc.title | Environmental assessment of recycled glass aggregates in reinforced concrete | |
dc.title.alternative | Екологічна оцінка використання заповнювачів, одержаних з рециклінгу скляних відходів, в залізобетоні | |
dc.type | Article |
Files
License bundle
1 - 1 of 1