Environmental assessment of recycled glass aggregates in reinforced concrete

dc.citation.epage101
dc.citation.issue1
dc.citation.spage92
dc.contributor.affiliationКінгстонський університет
dc.contributor.affiliationKingston University
dc.contributor.authorГенган, Г.
dc.contributor.authorК’ю, Х.
dc.contributor.authorGengan, G.
dc.contributor.authorKew, H.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-05-23T07:59:29Z
dc.date.available2024-05-23T07:59:29Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractСталий розвиток бетонної промисловості є під загрозою через використання природних ресурсів, що негативно впливає на навколишнє середовище, включаючи вуглецевий слід. Необхідний швидкий перехід до сталого мислення, враховуючи надзвичайну ситуацію, спричинену впливом людини на зміни клімату. Бетон з добавкою відходів рециклінгу скла викликав зацікавленість у будівельній галузі завдяки своєму екологічному підходу. Розглянуто екологічні наслідки часткової заміни природних заповнювачів у бетоні заповнювачем, одержаним із рециклінгу скляних відходів, із різним їх відсотковим вмістом, а саме 10, 25, 50 і 75 мас. %, які потім порівнюються з контрольованим складом бетону. Оцінку життєвого циклу (LCA) було проведено через GaBi V9, освітній пакет, наданий Кінгстонському університету (м. Лондон, Великобританія). Програмне забезпечення включало бази даних, які відповідали технології “від колиски до могили”, а також IS0 14040. Результати досліджень свідчать, що 287 кг CO2Eq. генерується під час виробництва звичайного контрольного бетону, тоді як бетон із добавкою 20 мас. % відходів рециклінгу скла призводить до зменшення потенціалу глобального потепління, який становить 258 кг CO2Eq. Як видно з результатів досліджень, бетон M25 містить 1,68 кг CFC-11Eq. порівняно з 1,85 кг CFC-11Eq. для бетону з природного заповнювача. Бетони М10 і М25 з добавкою 10 та 25 мас. % відходів рециклінгу скла мали незначний вплив на показники зміни клімату, респіраторних органічних речовин та підкислення. Незважаючи на те, що бетон з добавкою відходів рециклінгу скла характеризується кількома нижчими показниками впливу на навколишнє середовище, існує потреба у покращенні деяких факторів, а саме підкислення та респіраторних органічних речовин.
dc.description.abstractThe sustainability of the concrete industry is in jeopardy due to the use of natural resources which impacts the environment. A swift shift towards sustainable thinking is required considering the emergency triggered by human activity on the climate. Glass concrete (GC) has sparked curiosity of the construction industry owing to its environmentally friendly approach. This article examines the environmental implications of partially replacing natural aggregates in concrete with recycled glass aggregate at various percentages i. e. 10 %, 25 %, 50 %, and 75 % which is then compared to controlled concrete specimen (CC). The assessment indicated 287 kgCO2Eq were generated for control concrete (CC), whereas concrete with 20 % glass aggregate (GA) resulted in 258 kg CO2Eq. global warming potential. Likewise, M25 concrete was reported to have 1.68 kg CFC-11Eq compared to 1.85 kg CFC-11Eq for natural aggregate concrete. Even though glass concrete demonstrates lower values in several environmental effects, there is need for improvement in impact categories including acidification and respiratory organics.
dc.format.extent92-101
dc.format.pages10
dc.identifier.citationGengan G. Environmental assessment of recycled glass aggregates in reinforced concrete / G. Gengan, H. Kew // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 92–101.
dc.identifier.citationenGengan G. Environmental assessment of recycled glass aggregates in reinforced concrete / G. Gengan, H. Kew // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 92–101.
dc.identifier.doidoi.org/10.23939/jtbp2023.01.092
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/62067
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (5), 2023
dc.relation.referencesA.Soliman, N., & ArezkiTagnit-Hamou. (2017). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243-252. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.187
dc.relation.referencesAkan, M. Ö., G.Dhavale, D., & Sarkis, J. (2017). Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. Journal of Cleaner Production, 167, 1195-1207. DOI: https://doi.org/10.1016/j.jclepro.2017.07.225
dc.relation.referencesAlyousef, R., Ali, B., Mohammed, A., Kurda, R., Alabduljabbar, H., & Riaz, S. (2021). Evaluation of Mechanical and Permeability Characteristics of Microfiber-Reinforced Recycled Aggregate Concrete with Different Potential Waste Mineral Admixtures. Materials, 14(20), 5933. DOI: https://doi.org/10.3390%2Fma14205933
dc.relation.referencesBianco, I., Tomos, B. A., & Vinai, R. (2021). Analysis of the environmental impacts of alkali-activated concrete produced with waste glass-derived silicate activator - A LCA study. Journal of Cleaner Production, 316, 128383. DOI: https://doi.org/10.1016/j.jclepro.2021.128383
dc.relation.referencesCasini, M. (2022). Holistic building design approach. In Construction 4.0 Advanced Technology, Tools and Materials for the Digital Transformation of the Construction Industry (pp. 61-149). Sawston: Woodhead Publishing Series in Civil and Structural Engineering. DOI: http://dx.doi.org/10.1201/9781003106944
dc.relation.referencesCastro, S. d., & Brito, J. d. (2013). Evaluation of the durability of concrete made with crushed glass aggregates. Journal of Cleaner Production, 41, 7-14. DOI: https://doi.org/10.1016/j.jclepro.2012.09.021
dc.relation.referencesEnvironment, U., L.Scrivener, K., M.John, V., & M.Gartner, E. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry☆. Cement and Concrete Research, 114, 2-26. DOI: https://doi.org/10.1016/j.cemconres.2018.03.015
dc.relation.referencesGursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48. DOI: https://doi.org/10.1016/j.cemconcomp.2014.03.005
dc.relation.referencesLi, Y., Han, M., Liu, S., & Chen, G. (2019). Energy consumption and greenhouse gas emissions by buildings: A multi-scale perspective. Building and Environment, 151, 240-250. DOI: http://dx.doi.org/10.1016/j.buildenv.2018.11.003
dc.relation.referencesLimbachiya, M., Leelawat, T., & Dhir, R. (2000). Use of recycled concrete aggregate in high-strength concrete. Materials and Structures, 33, 547-580. DOI: https://doi.org/10.1007/BF02480538
dc.relation.referencesM.Manjunatha, Malingaraya, S., H.G.Mounika, & Ravi, K. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today : Proceedings, 47(13), 3637-3644. DOI: https://doi.org/10.1016/j.jmrt.2022.03.008
dc.relation.referencesManzoor, A., kumar, E. Y., & Sharma, L. (2022). Comparison of partially replaced concrete by waste glass with control concrete. Materials Today: Proceedings, In Press. DOI: http://dx.doi.org/10.1016/j.matpr.2022.09.092
dc.relation.referencesNedeljković, M., Visser, J., Šavija, B., Valcke, S., & Schlangen, E. (2021). Use of fine recycled concrete aggregates in concrete: A critical review. Journal of Building Engineering, 38, 102196. DOI: https://doi.org/10.1016/j.jobe.2021.102196
dc.relation.referencesNi, S., Liu, H., Li, Q., Quan, H., Gheibi, M., M.Fathollahi-Fard, A., & Tian, G. (2022). Assessment of the engineering properties, carbon dioxide emission and economic of biomass recycled aggregate concrete: A novel approach for building green concretes. Journal of Cleaner Production, 365, 132780. DOI: https://doi.org/10.1016/j.jclepro.2022.132780
dc.relation.referencesSchmitz, A., Kamiński, J., Scalet, B. M., & Soria, A. (2011). Energy consumption and CO2 emissions of the European glass industry. Energy Policy, 39(1), 142-155. DOI: http://dx.doi.org/10.1016/j.enpol.2010.09.022
dc.relation.referencesVillalba, G., Liu, Y., Schroder, H., & Ayres, R. U. (2008). Global Phosphorus Flows in the Industrial Economy From a Production Perspective. Journal of Industrial Ecology, 12(4), 557-569. DOI: https://doi.org/10.1111/j.1530-9290.2008.00050.x
dc.relation.referencesW.Griffin, P., P.Hammond, G., & C.McKenna, R. (2021). Industrial energy use and decarbonisation in the glass sector: A UK perspective. Advances in Applied Energy, 3, 100037. DOI: https://doi.org/10.1016/j.adapen.2021.100037
dc.relation.referencesZhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115-125. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.078
dc.relation.referencesZhu, Y., Li, Q., Xu, P., Wang, X., & Kou, S. (2019). Properties of Concrete Prepared with Recycled Aggregates Treated by Bio-Deposition Adding Oxygen Release Compound. Materials, 12(13), 2147. DOI: https://doi.org/10.3390/ma12132147
dc.relation.referencesenA.Soliman, N., & ArezkiTagnit-Hamou. (2017). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243-252. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.187
dc.relation.referencesenAkan, M. Ö., G.Dhavale, D., & Sarkis, J. (2017). Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. Journal of Cleaner Production, 167, 1195-1207. DOI: https://doi.org/10.1016/j.jclepro.2017.07.225
dc.relation.referencesenAlyousef, R., Ali, B., Mohammed, A., Kurda, R., Alabduljabbar, H., & Riaz, S. (2021). Evaluation of Mechanical and Permeability Characteristics of Microfiber-Reinforced Recycled Aggregate Concrete with Different Potential Waste Mineral Admixtures. Materials, 14(20), 5933. DOI: https://doi.org/10.3390%2Fma14205933
dc.relation.referencesenBianco, I., Tomos, B. A., & Vinai, R. (2021). Analysis of the environmental impacts of alkali-activated concrete produced with waste glass-derived silicate activator - A LCA study. Journal of Cleaner Production, 316, 128383. DOI: https://doi.org/10.1016/j.jclepro.2021.128383
dc.relation.referencesenCasini, M. (2022). Holistic building design approach. In Construction 4.0 Advanced Technology, Tools and Materials for the Digital Transformation of the Construction Industry (pp. 61-149). Sawston: Woodhead Publishing Series in Civil and Structural Engineering. DOI: http://dx.doi.org/10.1201/9781003106944
dc.relation.referencesenCastro, S. d., & Brito, J. d. (2013). Evaluation of the durability of concrete made with crushed glass aggregates. Journal of Cleaner Production, 41, 7-14. DOI: https://doi.org/10.1016/j.jclepro.2012.09.021
dc.relation.referencesenEnvironment, U., L.Scrivener, K., M.John, V., & M.Gartner, E. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry☆. Cement and Concrete Research, 114, 2-26. DOI: https://doi.org/10.1016/j.cemconres.2018.03.015
dc.relation.referencesenGursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48. DOI: https://doi.org/10.1016/j.cemconcomp.2014.03.005
dc.relation.referencesenLi, Y., Han, M., Liu, S., & Chen, G. (2019). Energy consumption and greenhouse gas emissions by buildings: A multi-scale perspective. Building and Environment, 151, 240-250. DOI: http://dx.doi.org/10.1016/j.buildenv.2018.11.003
dc.relation.referencesenLimbachiya, M., Leelawat, T., & Dhir, R. (2000). Use of recycled concrete aggregate in high-strength concrete. Materials and Structures, 33, 547-580. DOI: https://doi.org/10.1007/BF02480538
dc.relation.referencesenM.Manjunatha, Malingaraya, S., H.G.Mounika, & Ravi, K. (2021). Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Materials Today : Proceedings, 47(13), 3637-3644. DOI: https://doi.org/10.1016/j.jmrt.2022.03.008
dc.relation.referencesenManzoor, A., kumar, E. Y., & Sharma, L. (2022). Comparison of partially replaced concrete by waste glass with control concrete. Materials Today: Proceedings, In Press. DOI: http://dx.doi.org/10.1016/j.matpr.2022.09.092
dc.relation.referencesenNedeljković, M., Visser, J., Šavija, B., Valcke, S., & Schlangen, E. (2021). Use of fine recycled concrete aggregates in concrete: A critical review. Journal of Building Engineering, 38, 102196. DOI: https://doi.org/10.1016/j.jobe.2021.102196
dc.relation.referencesenNi, S., Liu, H., Li, Q., Quan, H., Gheibi, M., M.Fathollahi-Fard, A., & Tian, G. (2022). Assessment of the engineering properties, carbon dioxide emission and economic of biomass recycled aggregate concrete: A novel approach for building green concretes. Journal of Cleaner Production, 365, 132780. DOI: https://doi.org/10.1016/j.jclepro.2022.132780
dc.relation.referencesenSchmitz, A., Kamiński, J., Scalet, B. M., & Soria, A. (2011). Energy consumption and CO2 emissions of the European glass industry. Energy Policy, 39(1), 142-155. DOI: http://dx.doi.org/10.1016/j.enpol.2010.09.022
dc.relation.referencesenVillalba, G., Liu, Y., Schroder, H., & Ayres, R. U. (2008). Global Phosphorus Flows in the Industrial Economy From a Production Perspective. Journal of Industrial Ecology, 12(4), 557-569. DOI: https://doi.org/10.1111/j.1530-9290.2008.00050.x
dc.relation.referencesenW.Griffin, P., P.Hammond, G., & C.McKenna, R. (2021). Industrial energy use and decarbonisation in the glass sector: A UK perspective. Advances in Applied Energy, 3, 100037. DOI: https://doi.org/10.1016/j.adapen.2021.100037
dc.relation.referencesenZhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., & Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115-125. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.078
dc.relation.referencesenZhu, Y., Li, Q., Xu, P., Wang, X., & Kou, S. (2019). Properties of Concrete Prepared with Recycled Aggregates Treated by Bio-Deposition Adding Oxygen Release Compound. Materials, 12(13), 2147. DOI: https://doi.org/10.3390/ma12132147
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2017.03.187
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2017.07.225
dc.relation.urihttps://doi.org/10.3390%2Fma14205933
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2021.128383
dc.relation.urihttp://dx.doi.org/10.1201/9781003106944
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2012.09.021
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2018.03.015
dc.relation.urihttps://doi.org/10.1016/j.cemconcomp.2014.03.005
dc.relation.urihttp://dx.doi.org/10.1016/j.buildenv.2018.11.003
dc.relation.urihttps://doi.org/10.1007/BF02480538
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2022.03.008
dc.relation.urihttp://dx.doi.org/10.1016/j.matpr.2022.09.092
dc.relation.urihttps://doi.org/10.1016/j.jobe.2021.102196
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2022.132780
dc.relation.urihttp://dx.doi.org/10.1016/j.enpol.2010.09.022
dc.relation.urihttps://doi.org/10.1111/j.1530-9290.2008.00050.x
dc.relation.urihttps://doi.org/10.1016/j.adapen.2021.100037
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.03.078
dc.relation.urihttps://doi.org/10.3390/ma12132147
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Gengan G., Kew H., 2023
dc.subjectбетон
dc.subjectскляні заповнювачі
dc.subjectвплив на навколишнє середовище
dc.subjectоцінка життєвого циклу та вуглецевий слід
dc.subjectConcrete
dc.subjectGlass aggregates
dc.subjectEnvironmental impact
dc.subjectLife cycle assessment and Carbon footprint
dc.titleEnvironmental assessment of recycled glass aggregates in reinforced concrete
dc.title.alternativeЕкологічна оцінка використання заповнювачів, одержаних з рециклінгу скляних відходів, в залізобетоні
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v5n1_Gengan_G-Environmental_assessment_92-101.pdf
Size:
430.79 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v5n1_Gengan_G-Environmental_assessment_92-101__COVER.png
Size:
468.2 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: