Effective wall structures with use of flax straw concretes
dc.citation.epage | 63 | |
dc.citation.issue | 1 | |
dc.citation.spage | 56 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Новосад, П. В. | |
dc.contributor.author | Марущак, У. Д. | |
dc.contributor.author | Позняк, О. Р. | |
dc.contributor.author | Novosad, P. | |
dc.contributor.author | Marushchak, U. | |
dc.contributor.author | Pozniak, O. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-05-23T07:59:34Z | |
dc.date.available | 2024-05-23T07:59:34Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Будівельні технології, які відповідають сучасним вимогам енергоефективності та екології, – це технології зеленого будівництва, близько нуль-енергетичних будівель з біокліматичним дизайном та оптимізованим енергоспоживанням. Виробництво будівельних матеріалів, зокрема теплоізоляційних, частка яких зростає у енергоефективному будівництві, пов’язане із значним енергоспоживанням та викидами вуглекислого газу. Згідно з сучасними тенденціями, перспективними огороджувальними конструкціями в зелених будівлях є конструкції з використанням матеріалів з низьким впливом на довкілля на основі природної сировини та відходів. Проведено оцінку технічних рішень стінових огороджувальних конструкцій житлових індивідуальних будинків із використанням легкого теплоізоляційного бетону на основі костри льону та вапняного в’яжучого із середньою густиною 300–350 кг/м3 для періоду опалювання та охолодження. Показано, що забезпечення необхідних показників зовнішніх стін енергоефективних будівель досягається використанням багатошарових конструкцій із теплоізоляційним шаром костробетону або одношарових стінових конструкцій з костробетону за каркасною технологією будівництва. Такі стінові конструкції відповідають вимогам за приведеним опором теплопередачі за товщини теплоізоляційного шару з легкого костробетону більше ніж 0,25 м та товщини стіни каркасного будинку з теплоізоляційного бетону більше ніж 0,3 м. Високий опір теплопередачі та висока теплова інерційність стін із застосуванням костробетону призводять до зниження втрат теплоти в опалювальний період (23,15–23,24 кВт·год/(м 2 стіни рік)) та надходження сонячного тепла в період охолодження (0,11–0,13 кВт·год/(м 2 стіни рік)), унаслідок чого зменшується споживання енергії на опалення та охолодження будівлі. | |
dc.description.abstract | The modern building technologies are technologies of green construction, near zero-energy and active buildings with bioclimatic design, optimized energy consumption and CO2 emissions. Prospective enclosing structures of such buildings are structures using available, low cost, and environmentally friendly materials based on plant raw materials. In this paper the evaluation of technical solutions of wall enclosing structures using flax concrete based on lime binder with a density of 300–350 kg/m3 was carried out, taking into account their heating and cooling loads in residential buildings. It is shown that the provision of the necessary indicators of the external walls of energy-efficient buildings is achieved by using multilayer structures with a heat-insulating layer of flax straw concrete or a single-layer structures made from flax straw concrete in frame construction technology. | |
dc.format.extent | 56-63 | |
dc.format.pages | 8 | |
dc.identifier.citation | Novosad P. Effective wall structures with use of flax straw concretes / P. Novosad, U. Marushchak, O. Pozniak // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 56–63. | |
dc.identifier.citationen | Novosad P. Effective wall structures with use of flax straw concretes / P. Novosad, U. Marushchak, O. Pozniak // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 56–63. | |
dc.identifier.doi | doi.org/10.23939/jtbp2023.01.056 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/62078 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 1 (5), 2023 | |
dc.relation.references | Attia, S., Kosiński, P., Wójcik, R., Węglarz, A., Koc, D., & Laurent, O. (2022). Energy efficiency in the polish residential building stock: A literature review. Journal of Building Engineering, 45, 103461. doi:10.1016/j.jobe.2021.103461. https://doi.org/10.1016/j.jobe.2021.103461 | |
dc.relation.references | Mostafavi, F., Tahsildoost, M., & Zomorodian, Z. S. (2021). Energy efficiency and carbon emission in high-rise buildings: A review (2005-2020). Building and Environment, 206, 108329. doi:10.1016/j.buildenv.2021.108329 https://doi.org/10.1016/j.buildenv.2021.108329 | |
dc.relation.references | Sanytsky, M., Marushchak, U., Secret, R., & Wojcikiewiez, M. (2014). Energy and economic indicators of individual houses. Building structures, 80, 176-181 (in Ukranian). http://nbuv.gov.ua/UJRN/buko_2014_80_34 | |
dc.relation.references | Outcome Document of the Ukraine Recovery Conference URC2022 'Lugano Declaration' (2022). Retrieved from https://reliefweb.int/report/ukraine/outcome-document-ukraine-recovery-c.... | |
dc.relation.references | Santamouris, M., & Vasilakopoulou, K. (2021). Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. Advances in Electrical Engineering, Electronics and Energy, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002 | |
dc.relation.references | Norouzi, N., & Nasiri, Z. (2021). Confusing problem of green architecture and false green architecture in MENA region. Journal Environmental Problems. 6, 1, 48-58. doi:10.23939/ep2021.01.048. https://doi.org/10.23939/ep2021.01.048 | |
dc.relation.references | Chi, B., Lu, W., Ye, M., Bao, Z., & Zhang, X. (2020). Construction waste minimization in green building: A comparative analysis of LEED-NC 2009 certified projects in the US and China. Journal of Cleaner Production, 256, 120749. doi: https://doi.org/10.1016/j.jclepro.2020.120749 | |
dc.relation.references | Keltsch, M., Lang, W., & Aue T. (2017). Nearly Zero Energy Standard for Non-Residential Buildings with high Energy Demands-An Empirical Case Study Using the State Related Properties of Bavaria. Buildings, 7, 25 doi: 10.3390/buildings7010025.https://doi.org/10.3390/buildings7010025 | |
dc.relation.references | Kozak-Jagieła, E., Kusak, G., Klich, A., & Mojkowska-Gawełczyk, M. (2020). Thermomodernization of a Residential Building to NZEB Level. IOP Conference Series: Materials Science and Engineering, 960. doi.org/10.1088/1757-899x/960/3/032098. https://doi.org/10.1088/1757-899X/960/3/032098 | |
dc.relation.references | Sanytsky, M., Sekret, R., & Wojcikiewiez, M. (2012). Energetic and ecological analysis of energy-saving and passive houses. SSP-Journal of Civil Engineering, 7, 1, 71-78. doi:10.2478/v10299-012-0020-3. https://doi.org/10.2478/v10299-012-0020-3 | |
dc.relation.references | Antonelli, J., Erba L., & Azambuja, M. (2020). Walls composed of different materials: a brief review on thermal comfort. Revista Nacional de Gerenciamento de Cidades. 8. 57-63. 10.17271/2318847286620202699. https://doi.org/10.17271/2318847286620202699 | |
dc.relation.references | Marushchak, U., & Pozniak, O. (2022). Analysis of wall materials according to thermal parameters. Theory and Building Practice. 4, 1, 63-70. doi.org/10.23939/jtbp2022.01.063. https://doi.org/10.23939/jtbp2022.01.063 | |
dc.relation.references | Marushchak, U., Pozniak, O., Mazurak, O. (2023). Assessment of wall structures for reconstruction of buildings. Lecture Notes in Civil Engineering, 290, 270-276. DOI: 10.1007/978-3-031-14141-6_27. https://doi.org/10.1007/978-3-031-14141-6_27 | |
dc.relation.references | Perry, G.A. (2019). Mineral Wool Insulation is Not Green, Sustainable or Environmentally Friendly. Retrieved from https://miscimages-2.s3.amazonaws.com | |
dc.relation.references | Wang, H., Chiang, P-C., Cai, Y., Li, C., Wang, X., Chen, T-L. & Huang, Q. (2018). Application of wall and insulation materials on green building: A Review. Sustainability, 10, 3331. doi:10.3390/su10093331. https://doi.org/10.3390/su10093331 | |
dc.relation.references | Pedroso, M., Brito, J., & Silvestre, J.D. (2019). Characterization of walls with eco-efficient acoustic insulation materials (traditional and innovative). Construction and Building Materials, 222, 892-902. doi:10.1016/j.conbuildmat.2019.07.259. https://doi.org/10.1016/j.conbuildmat.2019.07.259 | |
dc.relation.references | Torres-Rivas, A., Pozo, C., Palumbo, M., Ewertowska, A., Jiménez, L. & Boer, D. (2021). Systematic combination of insulation biomaterials to enhance energy and environmental efficiency in buildings. Construction and Building Materials, 267, 120973. doi:10.1016/j.conbuildmat.2020.120973. https://doi.org/10.1016/j.conbuildmat.2020.120973 | |
dc.relation.references | Marques, B., Tadeu, A., Almeida, J., António, J., & Brito, J. (2020). Characterization of sustainable building walls made from rice straw bales. Journal of Building Engineering, 28, 101041. doi:10.1016/j.jobe.2019.101041. https://doi.org/10.1016/j.jobe.2019.101041 | |
dc.relation.references | Babenko, M., Estokova, A., Unčik S., & Savytskyi, M. (2022). Comparative study of lightweight concretes based on hemp and flax straw. Slovak Journal of Civil Engineering, 30, 4, 11 - 16. DOI: 10.2478/sj/ce-2022-0023 https://doi.org/10.2478/sjce-2022-0023 | |
dc.relation.references | Novosad, P., & Pozniak, O. (2021). Thermal insulation materials based on flax straw. Theory and Building Practice, 3, 2, 46-51. doi:10.23939/jtbp2021.02.046. https://doi.org/10.23939/jtbp2021.02.046 | |
dc.relation.references | Hajj Obeid, M., Douzane, O., Freitas Dutra, L., Promis, G., Laidoudi, B., Bordet, F., & Langlet, T. (2022). Physical and Mechanical Properties of Rapeseed Straw Concrete. Materials, 15, 8611. doi.org/10.3390/ma15238611. https://doi.org/10.3390/ma15238611 | |
dc.relation.references | Garikapati, K.P., & Sadeghian, P. (2020). Mechanical behavior of flax-lime concrete blocks made of waste flax shives and lime binder reinforced with jute fabric. Journal of Building Engineering, 20, 101187. doi:10.1016/j.jobe.2020.101187. https://doi.org/10.1016/j.jobe.2020.101187 | |
dc.relation.references | Kisilewicz, T., Fedorczak-Cisak, M., & Barkanyi, T. (2019). Active thermal insulation as an element limiting heat loss through external walls. Energy and Buildings, 205, 109541. doi:10.1016/j.enbuild.2019.109541. https://doi.org/10.1016/j.enbuild.2019.109541 | |
dc.relation.references | Voznyak,O., Yurkevych, Y., Sukholova, I., Dovbush, O., & Kasynets, M. (2020). Thermally conductive cost of the heat-insulating materials. Theory and Building Practice, 2, 2, 92-98. doi:10.23939/jtbp2020.02.092. https://doi.org/10.23939/jtbp2020.02.092 | |
dc.relation.referencesen | Attia, S., Kosiński, P., Wójcik, R., Węglarz, A., Koc, D., & Laurent, O. (2022). Energy efficiency in the polish residential building stock: A literature review. Journal of Building Engineering, 45, 103461. doi:10.1016/j.jobe.2021.103461. https://doi.org/10.1016/j.jobe.2021.103461 | |
dc.relation.referencesen | Mostafavi, F., Tahsildoost, M., & Zomorodian, Z. S. (2021). Energy efficiency and carbon emission in high-rise buildings: A review (2005-2020). Building and Environment, 206, 108329. doi:10.1016/j.buildenv.2021.108329 https://doi.org/10.1016/j.buildenv.2021.108329 | |
dc.relation.referencesen | Sanytsky, M., Marushchak, U., Secret, R., & Wojcikiewiez, M. (2014). Energy and economic indicators of individual houses. Building structures, 80, 176-181 (in Ukranian). http://nbuv.gov.ua/UJRN/buko_2014_80_34 | |
dc.relation.referencesen | Outcome Document of the Ukraine Recovery Conference URC2022 'Lugano Declaration' (2022). Retrieved from https://reliefweb.int/report/ukraine/outcome-document-ukraine-recovery-c.... | |
dc.relation.referencesen | Santamouris, M., & Vasilakopoulou, K. (2021). Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. Advances in Electrical Engineering, Electronics and Energy, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002 | |
dc.relation.referencesen | Norouzi, N., & Nasiri, Z. (2021). Confusing problem of green architecture and false green architecture in MENA region. Journal Environmental Problems. 6, 1, 48-58. doi:10.23939/ep2021.01.048. https://doi.org/10.23939/ep2021.01.048 | |
dc.relation.referencesen | Chi, B., Lu, W., Ye, M., Bao, Z., & Zhang, X. (2020). Construction waste minimization in green building: A comparative analysis of LEED-NC 2009 certified projects in the US and China. Journal of Cleaner Production, 256, 120749. doi: https://doi.org/10.1016/j.jclepro.2020.120749 | |
dc.relation.referencesen | Keltsch, M., Lang, W., & Aue T. (2017). Nearly Zero Energy Standard for Non-Residential Buildings with high Energy Demands-An Empirical Case Study Using the State Related Properties of Bavaria. Buildings, 7, 25 doi: 10.3390/buildings7010025.https://doi.org/10.3390/buildings7010025 | |
dc.relation.referencesen | Kozak-Jagieła, E., Kusak, G., Klich, A., & Mojkowska-Gawełczyk, M. (2020). Thermomodernization of a Residential Building to NZEB Level. IOP Conference Series: Materials Science and Engineering, 960. doi.org/10.1088/1757-899x/960/3/032098. https://doi.org/10.1088/1757-899X/960/3/032098 | |
dc.relation.referencesen | Sanytsky, M., Sekret, R., & Wojcikiewiez, M. (2012). Energetic and ecological analysis of energy-saving and passive houses. SSP-Journal of Civil Engineering, 7, 1, 71-78. doi:10.2478/v10299-012-0020-3. https://doi.org/10.2478/v10299-012-0020-3 | |
dc.relation.referencesen | Antonelli, J., Erba L., & Azambuja, M. (2020). Walls composed of different materials: a brief review on thermal comfort. Revista Nacional de Gerenciamento de Cidades. 8. 57-63. 10.17271/2318847286620202699. https://doi.org/10.17271/2318847286620202699 | |
dc.relation.referencesen | Marushchak, U., & Pozniak, O. (2022). Analysis of wall materials according to thermal parameters. Theory and Building Practice. 4, 1, 63-70. doi.org/10.23939/jtbp2022.01.063. https://doi.org/10.23939/jtbp2022.01.063 | |
dc.relation.referencesen | Marushchak, U., Pozniak, O., Mazurak, O. (2023). Assessment of wall structures for reconstruction of buildings. Lecture Notes in Civil Engineering, 290, 270-276. DOI: 10.1007/978-3-031-14141-6_27. https://doi.org/10.1007/978-3-031-14141-6_27 | |
dc.relation.referencesen | Perry, G.A. (2019). Mineral Wool Insulation is Not Green, Sustainable or Environmentally Friendly. Retrieved from https://miscimages-2.s3.amazonaws.com | |
dc.relation.referencesen | Wang, H., Chiang, P-C., Cai, Y., Li, C., Wang, X., Chen, T-L. & Huang, Q. (2018). Application of wall and insulation materials on green building: A Review. Sustainability, 10, 3331. doi:10.3390/su10093331. https://doi.org/10.3390/su10093331 | |
dc.relation.referencesen | Pedroso, M., Brito, J., & Silvestre, J.D. (2019). Characterization of walls with eco-efficient acoustic insulation materials (traditional and innovative). Construction and Building Materials, 222, 892-902. doi:10.1016/j.conbuildmat.2019.07.259. https://doi.org/10.1016/j.conbuildmat.2019.07.259 | |
dc.relation.referencesen | Torres-Rivas, A., Pozo, C., Palumbo, M., Ewertowska, A., Jiménez, L. & Boer, D. (2021). Systematic combination of insulation biomaterials to enhance energy and environmental efficiency in buildings. Construction and Building Materials, 267, 120973. doi:10.1016/j.conbuildmat.2020.120973. https://doi.org/10.1016/j.conbuildmat.2020.120973 | |
dc.relation.referencesen | Marques, B., Tadeu, A., Almeida, J., António, J., & Brito, J. (2020). Characterization of sustainable building walls made from rice straw bales. Journal of Building Engineering, 28, 101041. doi:10.1016/j.jobe.2019.101041. https://doi.org/10.1016/j.jobe.2019.101041 | |
dc.relation.referencesen | Babenko, M., Estokova, A., Unčik S., & Savytskyi, M. (2022). Comparative study of lightweight concretes based on hemp and flax straw. Slovak Journal of Civil Engineering, 30, 4, 11 - 16. DOI: 10.2478/sj/ce-2022-0023 https://doi.org/10.2478/sjce-2022-0023 | |
dc.relation.referencesen | Novosad, P., & Pozniak, O. (2021). Thermal insulation materials based on flax straw. Theory and Building Practice, 3, 2, 46-51. doi:10.23939/jtbp2021.02.046. https://doi.org/10.23939/jtbp2021.02.046 | |
dc.relation.referencesen | Hajj Obeid, M., Douzane, O., Freitas Dutra, L., Promis, G., Laidoudi, B., Bordet, F., & Langlet, T. (2022). Physical and Mechanical Properties of Rapeseed Straw Concrete. Materials, 15, 8611. doi.org/10.3390/ma15238611. https://doi.org/10.3390/ma15238611 | |
dc.relation.referencesen | Garikapati, K.P., & Sadeghian, P. (2020). Mechanical behavior of flax-lime concrete blocks made of waste flax shives and lime binder reinforced with jute fabric. Journal of Building Engineering, 20, 101187. doi:10.1016/j.jobe.2020.101187. https://doi.org/10.1016/j.jobe.2020.101187 | |
dc.relation.referencesen | Kisilewicz, T., Fedorczak-Cisak, M., & Barkanyi, T. (2019). Active thermal insulation as an element limiting heat loss through external walls. Energy and Buildings, 205, 109541. doi:10.1016/j.enbuild.2019.109541. https://doi.org/10.1016/j.enbuild.2019.109541 | |
dc.relation.referencesen | Voznyak,O., Yurkevych, Y., Sukholova, I., Dovbush, O., & Kasynets, M. (2020). Thermally conductive cost of the heat-insulating materials. Theory and Building Practice, 2, 2, 92-98. doi:10.23939/jtbp2020.02.092. https://doi.org/10.23939/jtbp2020.02.092 | |
dc.relation.uri | https://doi.org/10.1016/j.jobe.2021.103461 | |
dc.relation.uri | https://doi.org/10.1016/j.buildenv.2021.108329 | |
dc.relation.uri | http://nbuv.gov.ua/UJRN/buko_2014_80_34 | |
dc.relation.uri | https://reliefweb.int/report/ukraine/outcome-document-ukraine-recovery-c... | |
dc.relation.uri | https://doi.org/10.1016/j.prime.2021.100002 | |
dc.relation.uri | https://doi.org/10.23939/ep2021.01.048 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2020.120749 | |
dc.relation.uri | https://doi.org/10.3390/buildings7010025 | |
dc.relation.uri | https://doi.org/10.1088/1757-899X/960/3/032098 | |
dc.relation.uri | https://doi.org/10.2478/v10299-012-0020-3 | |
dc.relation.uri | https://doi.org/10.17271/2318847286620202699 | |
dc.relation.uri | https://doi.org/10.23939/jtbp2022.01.063 | |
dc.relation.uri | https://doi.org/10.1007/978-3-031-14141-6_27 | |
dc.relation.uri | https://miscimages-2.s3.amazonaws.com | |
dc.relation.uri | https://doi.org/10.3390/su10093331 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2019.07.259 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2020.120973 | |
dc.relation.uri | https://doi.org/10.1016/j.jobe.2019.101041 | |
dc.relation.uri | https://doi.org/10.2478/sjce-2022-0023 | |
dc.relation.uri | https://doi.org/10.23939/jtbp2021.02.046 | |
dc.relation.uri | https://doi.org/10.3390/ma15238611 | |
dc.relation.uri | https://doi.org/10.1016/j.jobe.2020.101187 | |
dc.relation.uri | https://doi.org/10.1016/j.enbuild.2019.109541 | |
dc.relation.uri | https://doi.org/10.23939/jtbp2020.02.092 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Novosad P., Marushchak U., Pozniak O., 2023 | |
dc.subject | костробетон | |
dc.subject | стінова конструкція | |
dc.subject | теплоізоляція | |
dc.subject | енергоефективна будівля | |
dc.subject | зелене будівництво | |
dc.subject | опір теплопередачі | |
dc.subject | тепловтрати | |
dc.subject | flax straw concrete | |
dc.subject | wall structure | |
dc.subject | thermal insulation | |
dc.subject | energy efficient building | |
dc.subject | green construction | |
dc.subject | resistance to heat transfer | |
dc.subject | heat transfer | |
dc.title | Effective wall structures with use of flax straw concretes | |
dc.title.alternative | Ефективні стінові конструкції з використанням бетону на основі костри льону | |
dc.type | Article |
Files
License bundle
1 - 1 of 1