Effective wall structures with use of flax straw concretes

dc.citation.epage63
dc.citation.issue1
dc.citation.spage56
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorНовосад, П. В.
dc.contributor.authorМарущак, У. Д.
dc.contributor.authorПозняк, О. Р.
dc.contributor.authorNovosad, P.
dc.contributor.authorMarushchak, U.
dc.contributor.authorPozniak, O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-05-23T07:59:34Z
dc.date.available2024-05-23T07:59:34Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractБудівельні технології, які відповідають сучасним вимогам енергоефективності та екології, – це технології зеленого будівництва, близько нуль-енергетичних будівель з біокліматичним дизайном та оптимізованим енергоспоживанням. Виробництво будівельних матеріалів, зокрема теплоізоляційних, частка яких зростає у енергоефективному будівництві, пов’язане із значним енергоспоживанням та викидами вуглекислого газу. Згідно з сучасними тенденціями, перспективними огороджувальними конструкціями в зелених будівлях є конструкції з використанням матеріалів з низьким впливом на довкілля на основі природної сировини та відходів. Проведено оцінку технічних рішень стінових огороджувальних конструкцій житлових індивідуальних будинків із використанням легкого теплоізоляційного бетону на основі костри льону та вапняного в’яжучого із середньою густиною 300–350 кг/м3 для періоду опалювання та охолодження. Показано, що забезпечення необхідних показників зовнішніх стін енергоефективних будівель досягається використанням багатошарових конструкцій із теплоізоляційним шаром костробетону або одношарових стінових конструкцій з костробетону за каркасною технологією будівництва. Такі стінові конструкції відповідають вимогам за приведеним опором теплопередачі за товщини теплоізоляційного шару з легкого костробетону більше ніж 0,25 м та товщини стіни каркасного будинку з теплоізоляційного бетону більше ніж 0,3 м. Високий опір теплопередачі та висока теплова інерційність стін із застосуванням костробетону призводять до зниження втрат теплоти в опалювальний період (23,15–23,24 кВт·год/(м 2 стіни рік)) та надходження сонячного тепла в період охолодження (0,11–0,13 кВт·год/(м 2 стіни рік)), унаслідок чого зменшується споживання енергії на опалення та охолодження будівлі.
dc.description.abstractThe modern building technologies are technologies of green construction, near zero-energy and active buildings with bioclimatic design, optimized energy consumption and CO2 emissions. Prospective enclosing structures of such buildings are structures using available, low cost, and environmentally friendly materials based on plant raw materials. In this paper the evaluation of technical solutions of wall enclosing structures using flax concrete based on lime binder with a density of 300–350 kg/m3 was carried out, taking into account their heating and cooling loads in residential buildings. It is shown that the provision of the necessary indicators of the external walls of energy-efficient buildings is achieved by using multilayer structures with a heat-insulating layer of flax straw concrete or a single-layer structures made from flax straw concrete in frame construction technology.
dc.format.extent56-63
dc.format.pages8
dc.identifier.citationNovosad P. Effective wall structures with use of flax straw concretes / P. Novosad, U. Marushchak, O. Pozniak // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 56–63.
dc.identifier.citationenNovosad P. Effective wall structures with use of flax straw concretes / P. Novosad, U. Marushchak, O. Pozniak // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 56–63.
dc.identifier.doidoi.org/10.23939/jtbp2023.01.056
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/62078
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (5), 2023
dc.relation.referencesAttia, S., Kosiński, P., Wójcik, R., Węglarz, A., Koc, D., & Laurent, O. (2022). Energy efficiency in the polish residential building stock: A literature review. Journal of Building Engineering, 45, 103461. doi:10.1016/j.jobe.2021.103461. https://doi.org/10.1016/j.jobe.2021.103461
dc.relation.referencesMostafavi, F., Tahsildoost, M., & Zomorodian, Z. S. (2021). Energy efficiency and carbon emission in high-rise buildings: A review (2005-2020). Building and Environment, 206, 108329. doi:10.1016/j.buildenv.2021.108329 https://doi.org/10.1016/j.buildenv.2021.108329
dc.relation.referencesSanytsky, M., Marushchak, U., Secret, R., & Wojcikiewiez, M. (2014). Energy and economic indicators of individual houses. Building structures, 80, 176-181 (in Ukranian). http://nbuv.gov.ua/UJRN/buko_2014_80_34
dc.relation.referencesOutcome Document of the Ukraine Recovery Conference URC2022 'Lugano Declaration' (2022). Retrieved from https://reliefweb.int/report/ukraine/outcome-document-ukraine-recovery-c....
dc.relation.referencesSantamouris, M., & Vasilakopoulou, K. (2021). Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. Advances in Electrical Engineering, Electronics and Energy, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002
dc.relation.referencesNorouzi, N., & Nasiri, Z. (2021). Confusing problem of green architecture and false green architecture in MENA region. Journal Environmental Problems. 6, 1, 48-58. doi:10.23939/ep2021.01.048. https://doi.org/10.23939/ep2021.01.048
dc.relation.referencesChi, B., Lu, W., Ye, M., Bao, Z., & Zhang, X. (2020). Construction waste minimization in green building: A comparative analysis of LEED-NC 2009 certified projects in the US and China. Journal of Cleaner Production, 256, 120749. doi: https://doi.org/10.1016/j.jclepro.2020.120749
dc.relation.referencesKeltsch, M., Lang, W., & Aue T. (2017). Nearly Zero Energy Standard for Non-Residential Buildings with high Energy Demands-An Empirical Case Study Using the State Related Properties of Bavaria. Buildings, 7, 25 doi: 10.3390/buildings7010025.https://doi.org/10.3390/buildings7010025
dc.relation.referencesKozak-Jagieła, E., Kusak, G., Klich, A., & Mojkowska-Gawełczyk, M. (2020). Thermomodernization of a Residential Building to NZEB Level. IOP Conference Series: Materials Science and Engineering, 960. doi.org/10.1088/1757-899x/960/3/032098. https://doi.org/10.1088/1757-899X/960/3/032098
dc.relation.referencesSanytsky, M., Sekret, R., & Wojcikiewiez, M. (2012). Energetic and ecological analysis of energy-saving and passive houses. SSP-Journal of Civil Engineering, 7, 1, 71-78. doi:10.2478/v10299-012-0020-3. https://doi.org/10.2478/v10299-012-0020-3
dc.relation.referencesAntonelli, J., Erba L., & Azambuja, M. (2020). Walls composed of different materials: a brief review on thermal comfort. Revista Nacional de Gerenciamento de Cidades. 8. 57-63. 10.17271/2318847286620202699. https://doi.org/10.17271/2318847286620202699
dc.relation.referencesMarushchak, U., & Pozniak, O. (2022). Analysis of wall materials according to thermal parameters. Theory and Building Practice. 4, 1, 63-70. doi.org/10.23939/jtbp2022.01.063. https://doi.org/10.23939/jtbp2022.01.063
dc.relation.referencesMarushchak, U., Pozniak, O., Mazurak, O. (2023). Assessment of wall structures for reconstruction of buildings. Lecture Notes in Civil Engineering, 290, 270-276. DOI: 10.1007/978-3-031-14141-6_27. https://doi.org/10.1007/978-3-031-14141-6_27
dc.relation.referencesPerry, G.A. (2019). Mineral Wool Insulation is Not Green, Sustainable or Environmentally Friendly. Retrieved from https://miscimages-2.s3.amazonaws.com
dc.relation.referencesWang, H., Chiang, P-C., Cai, Y., Li, C., Wang, X., Chen, T-L. & Huang, Q. (2018). Application of wall and insulation materials on green building: A Review. Sustainability, 10, 3331. doi:10.3390/su10093331. https://doi.org/10.3390/su10093331
dc.relation.referencesPedroso, M., Brito, J., & Silvestre, J.D. (2019). Characterization of walls with eco-efficient acoustic insulation materials (traditional and innovative). Construction and Building Materials, 222, 892-902. doi:10.1016/j.conbuildmat.2019.07.259. https://doi.org/10.1016/j.conbuildmat.2019.07.259
dc.relation.referencesTorres-Rivas, A., Pozo, C., Palumbo, M., Ewertowska, A., Jiménez, L. & Boer, D. (2021). Systematic combination of insulation biomaterials to enhance energy and environmental efficiency in buildings. Construction and Building Materials, 267, 120973. doi:10.1016/j.conbuildmat.2020.120973. https://doi.org/10.1016/j.conbuildmat.2020.120973
dc.relation.referencesMarques, B., Tadeu, A., Almeida, J., António, J., & Brito, J. (2020). Characterization of sustainable building walls made from rice straw bales. Journal of Building Engineering, 28, 101041. doi:10.1016/j.jobe.2019.101041. https://doi.org/10.1016/j.jobe.2019.101041
dc.relation.referencesBabenko, M., Estokova, A., Unčik S., & Savytskyi, M. (2022). Comparative study of lightweight concretes based on hemp and flax straw. Slovak Journal of Civil Engineering, 30, 4, 11 - 16. DOI: 10.2478/sj/ce-2022-0023 https://doi.org/10.2478/sjce-2022-0023
dc.relation.referencesNovosad, P., & Pozniak, O. (2021). Thermal insulation materials based on flax straw. Theory and Building Practice, 3, 2, 46-51. doi:10.23939/jtbp2021.02.046. https://doi.org/10.23939/jtbp2021.02.046
dc.relation.referencesHajj Obeid, M., Douzane, O., Freitas Dutra, L., Promis, G., Laidoudi, B., Bordet, F., & Langlet, T. (2022). Physical and Mechanical Properties of Rapeseed Straw Concrete. Materials, 15, 8611. doi.org/10.3390/ma15238611. https://doi.org/10.3390/ma15238611
dc.relation.referencesGarikapati, K.P., & Sadeghian, P. (2020). Mechanical behavior of flax-lime concrete blocks made of waste flax shives and lime binder reinforced with jute fabric. Journal of Building Engineering, 20, 101187. doi:10.1016/j.jobe.2020.101187. https://doi.org/10.1016/j.jobe.2020.101187
dc.relation.referencesKisilewicz, T., Fedorczak-Cisak, M., & Barkanyi, T. (2019). Active thermal insulation as an element limiting heat loss through external walls. Energy and Buildings, 205, 109541. doi:10.1016/j.enbuild.2019.109541. https://doi.org/10.1016/j.enbuild.2019.109541
dc.relation.referencesVoznyak,O., Yurkevych, Y., Sukholova, I., Dovbush, O., & Kasynets, M. (2020). Thermally conductive cost of the heat-insulating materials. Theory and Building Practice, 2, 2, 92-98. doi:10.23939/jtbp2020.02.092. https://doi.org/10.23939/jtbp2020.02.092
dc.relation.referencesenAttia, S., Kosiński, P., Wójcik, R., Węglarz, A., Koc, D., & Laurent, O. (2022). Energy efficiency in the polish residential building stock: A literature review. Journal of Building Engineering, 45, 103461. doi:10.1016/j.jobe.2021.103461. https://doi.org/10.1016/j.jobe.2021.103461
dc.relation.referencesenMostafavi, F., Tahsildoost, M., & Zomorodian, Z. S. (2021). Energy efficiency and carbon emission in high-rise buildings: A review (2005-2020). Building and Environment, 206, 108329. doi:10.1016/j.buildenv.2021.108329 https://doi.org/10.1016/j.buildenv.2021.108329
dc.relation.referencesenSanytsky, M., Marushchak, U., Secret, R., & Wojcikiewiez, M. (2014). Energy and economic indicators of individual houses. Building structures, 80, 176-181 (in Ukranian). http://nbuv.gov.ua/UJRN/buko_2014_80_34
dc.relation.referencesenOutcome Document of the Ukraine Recovery Conference URC2022 'Lugano Declaration' (2022). Retrieved from https://reliefweb.int/report/ukraine/outcome-document-ukraine-recovery-c....
dc.relation.referencesenSantamouris, M., & Vasilakopoulou, K. (2021). Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. Advances in Electrical Engineering, Electronics and Energy, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002
dc.relation.referencesenNorouzi, N., & Nasiri, Z. (2021). Confusing problem of green architecture and false green architecture in MENA region. Journal Environmental Problems. 6, 1, 48-58. doi:10.23939/ep2021.01.048. https://doi.org/10.23939/ep2021.01.048
dc.relation.referencesenChi, B., Lu, W., Ye, M., Bao, Z., & Zhang, X. (2020). Construction waste minimization in green building: A comparative analysis of LEED-NC 2009 certified projects in the US and China. Journal of Cleaner Production, 256, 120749. doi: https://doi.org/10.1016/j.jclepro.2020.120749
dc.relation.referencesenKeltsch, M., Lang, W., & Aue T. (2017). Nearly Zero Energy Standard for Non-Residential Buildings with high Energy Demands-An Empirical Case Study Using the State Related Properties of Bavaria. Buildings, 7, 25 doi: 10.3390/buildings7010025.https://doi.org/10.3390/buildings7010025
dc.relation.referencesenKozak-Jagieła, E., Kusak, G., Klich, A., & Mojkowska-Gawełczyk, M. (2020). Thermomodernization of a Residential Building to NZEB Level. IOP Conference Series: Materials Science and Engineering, 960. doi.org/10.1088/1757-899x/960/3/032098. https://doi.org/10.1088/1757-899X/960/3/032098
dc.relation.referencesenSanytsky, M., Sekret, R., & Wojcikiewiez, M. (2012). Energetic and ecological analysis of energy-saving and passive houses. SSP-Journal of Civil Engineering, 7, 1, 71-78. doi:10.2478/v10299-012-0020-3. https://doi.org/10.2478/v10299-012-0020-3
dc.relation.referencesenAntonelli, J., Erba L., & Azambuja, M. (2020). Walls composed of different materials: a brief review on thermal comfort. Revista Nacional de Gerenciamento de Cidades. 8. 57-63. 10.17271/2318847286620202699. https://doi.org/10.17271/2318847286620202699
dc.relation.referencesenMarushchak, U., & Pozniak, O. (2022). Analysis of wall materials according to thermal parameters. Theory and Building Practice. 4, 1, 63-70. doi.org/10.23939/jtbp2022.01.063. https://doi.org/10.23939/jtbp2022.01.063
dc.relation.referencesenMarushchak, U., Pozniak, O., Mazurak, O. (2023). Assessment of wall structures for reconstruction of buildings. Lecture Notes in Civil Engineering, 290, 270-276. DOI: 10.1007/978-3-031-14141-6_27. https://doi.org/10.1007/978-3-031-14141-6_27
dc.relation.referencesenPerry, G.A. (2019). Mineral Wool Insulation is Not Green, Sustainable or Environmentally Friendly. Retrieved from https://miscimages-2.s3.amazonaws.com
dc.relation.referencesenWang, H., Chiang, P-C., Cai, Y., Li, C., Wang, X., Chen, T-L. & Huang, Q. (2018). Application of wall and insulation materials on green building: A Review. Sustainability, 10, 3331. doi:10.3390/su10093331. https://doi.org/10.3390/su10093331
dc.relation.referencesenPedroso, M., Brito, J., & Silvestre, J.D. (2019). Characterization of walls with eco-efficient acoustic insulation materials (traditional and innovative). Construction and Building Materials, 222, 892-902. doi:10.1016/j.conbuildmat.2019.07.259. https://doi.org/10.1016/j.conbuildmat.2019.07.259
dc.relation.referencesenTorres-Rivas, A., Pozo, C., Palumbo, M., Ewertowska, A., Jiménez, L. & Boer, D. (2021). Systematic combination of insulation biomaterials to enhance energy and environmental efficiency in buildings. Construction and Building Materials, 267, 120973. doi:10.1016/j.conbuildmat.2020.120973. https://doi.org/10.1016/j.conbuildmat.2020.120973
dc.relation.referencesenMarques, B., Tadeu, A., Almeida, J., António, J., & Brito, J. (2020). Characterization of sustainable building walls made from rice straw bales. Journal of Building Engineering, 28, 101041. doi:10.1016/j.jobe.2019.101041. https://doi.org/10.1016/j.jobe.2019.101041
dc.relation.referencesenBabenko, M., Estokova, A., Unčik S., & Savytskyi, M. (2022). Comparative study of lightweight concretes based on hemp and flax straw. Slovak Journal of Civil Engineering, 30, 4, 11 - 16. DOI: 10.2478/sj/ce-2022-0023 https://doi.org/10.2478/sjce-2022-0023
dc.relation.referencesenNovosad, P., & Pozniak, O. (2021). Thermal insulation materials based on flax straw. Theory and Building Practice, 3, 2, 46-51. doi:10.23939/jtbp2021.02.046. https://doi.org/10.23939/jtbp2021.02.046
dc.relation.referencesenHajj Obeid, M., Douzane, O., Freitas Dutra, L., Promis, G., Laidoudi, B., Bordet, F., & Langlet, T. (2022). Physical and Mechanical Properties of Rapeseed Straw Concrete. Materials, 15, 8611. doi.org/10.3390/ma15238611. https://doi.org/10.3390/ma15238611
dc.relation.referencesenGarikapati, K.P., & Sadeghian, P. (2020). Mechanical behavior of flax-lime concrete blocks made of waste flax shives and lime binder reinforced with jute fabric. Journal of Building Engineering, 20, 101187. doi:10.1016/j.jobe.2020.101187. https://doi.org/10.1016/j.jobe.2020.101187
dc.relation.referencesenKisilewicz, T., Fedorczak-Cisak, M., & Barkanyi, T. (2019). Active thermal insulation as an element limiting heat loss through external walls. Energy and Buildings, 205, 109541. doi:10.1016/j.enbuild.2019.109541. https://doi.org/10.1016/j.enbuild.2019.109541
dc.relation.referencesenVoznyak,O., Yurkevych, Y., Sukholova, I., Dovbush, O., & Kasynets, M. (2020). Thermally conductive cost of the heat-insulating materials. Theory and Building Practice, 2, 2, 92-98. doi:10.23939/jtbp2020.02.092. https://doi.org/10.23939/jtbp2020.02.092
dc.relation.urihttps://doi.org/10.1016/j.jobe.2021.103461
dc.relation.urihttps://doi.org/10.1016/j.buildenv.2021.108329
dc.relation.urihttp://nbuv.gov.ua/UJRN/buko_2014_80_34
dc.relation.urihttps://reliefweb.int/report/ukraine/outcome-document-ukraine-recovery-c...
dc.relation.urihttps://doi.org/10.1016/j.prime.2021.100002
dc.relation.urihttps://doi.org/10.23939/ep2021.01.048
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.120749
dc.relation.urihttps://doi.org/10.3390/buildings7010025
dc.relation.urihttps://doi.org/10.1088/1757-899X/960/3/032098
dc.relation.urihttps://doi.org/10.2478/v10299-012-0020-3
dc.relation.urihttps://doi.org/10.17271/2318847286620202699
dc.relation.urihttps://doi.org/10.23939/jtbp2022.01.063
dc.relation.urihttps://doi.org/10.1007/978-3-031-14141-6_27
dc.relation.urihttps://miscimages-2.s3.amazonaws.com
dc.relation.urihttps://doi.org/10.3390/su10093331
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.07.259
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2020.120973
dc.relation.urihttps://doi.org/10.1016/j.jobe.2019.101041
dc.relation.urihttps://doi.org/10.2478/sjce-2022-0023
dc.relation.urihttps://doi.org/10.23939/jtbp2021.02.046
dc.relation.urihttps://doi.org/10.3390/ma15238611
dc.relation.urihttps://doi.org/10.1016/j.jobe.2020.101187
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2019.109541
dc.relation.urihttps://doi.org/10.23939/jtbp2020.02.092
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Novosad P., Marushchak U., Pozniak O., 2023
dc.subjectкостробетон
dc.subjectстінова конструкція
dc.subjectтеплоізоляція
dc.subjectенергоефективна будівля
dc.subjectзелене будівництво
dc.subjectопір теплопередачі
dc.subjectтепловтрати
dc.subjectflax straw concrete
dc.subjectwall structure
dc.subjectthermal insulation
dc.subjectenergy efficient building
dc.subjectgreen construction
dc.subjectresistance to heat transfer
dc.subjectheat transfer
dc.titleEffective wall structures with use of flax straw concretes
dc.title.alternativeЕфективні стінові конструкції з використанням бетону на основі костри льону
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v5n1_Novosad_P-Effective_wall_structures_56-63.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v5n1_Novosad_P-Effective_wall_structures_56-63__COVER.png
Size:
467.26 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: