Особливості формування структури нікельнаповнених кополімерів полівінілпіролідону під час полімеризації з одночасним відновленням Ni2+
dc.citation.epage | 134 | |
dc.citation.issue | 2 | |
dc.citation.spage | 127 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Технічний університет Кошице | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Technical University of Košice | |
dc.contributor.author | Гриценко, О. М. | |
dc.contributor.author | Суберляк, О. В. | |
dc.contributor.author | Дулебова, Л. | |
dc.contributor.author | Гайдос, І. | |
dc.contributor.author | Бережний, Б. В. | |
dc.contributor.author | Grytsenko, O. M. | |
dc.contributor.author | Suberlyak, O. V. | |
dc.contributor.author | Dulebova, L. | |
dc.contributor.author | Gaydos, I. | |
dc.contributor.author | Berezhnyy, B. V. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T07:35:28Z | |
dc.date.available | 2024-01-22T07:35:28Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Підтверджено перебіг прищепленої полімеризації 2-гідроксіетилметакрилату на полівінілпіролідоні з утворенням сітчастого кополімеру одночасно з хімічним відновленням йонів нікелю. Встановлено вплив процесу відновлення на структурні параметри полімерної матриці – ефективність прищеплення та вміст полівінілпіролідону у кополімері, молекулярну масу міжвузлового фрагмента полімерної сітки. Досліджено вплив присутності компонентів полімер-мономерної композиції на формування частинок нікелевого наповнювача. Встановлено, що відновлення йонів нікелю в процесі полімеризації сприяє рівномірному розподілу утворених частинок металу в об’ємі полімерної матриці. | |
dc.description.abstract | The course of the grafted polymerization of 2-hydroxyethylmethacrylate on polyvinylpyrrolidone with the formation of a reticulated copolymer with simultaneously chemical reduction of nickel ions is confirmed. The influence of the reduction process on the structural parameters of the polymeric matrix – the grafting efficiency and the content of polyvinylpyrrolidone in the copolymer, the molecular weight between crosslinks is established. The influence of the presence of polymer-monomer composition components on the particles formation of nickel filler is investigated. It has been found that the nickel ions reduction during the polymerization process promotes a uniform distribution of the formed metal particles in the polymer matrix volume. | |
dc.format.extent | 127-134 | |
dc.format.pages | 8 | |
dc.identifier.citation | Особливості формування структури нікельнаповнених кополімерів полівінілпіролідону під час полімеризації з одночасним відновленням Ni2+ / О. М. Гриценко, О. В. Суберляк, Л. Дулебова, І. Гайдос, Б. В. Бережний // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2020. — Том 3. — № 2. — С. 127–134. | |
dc.identifier.citationen | Structure formation peculiarities of nickel-filled polyvinylpyrrolidone copolymers during polymerization with simultaneous Ni2+ reduction / O. M. Grytsenko, O. V. Suberlyak, L. Dulebova, I. Gaydos, B. V. Berezhnyy // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 127–134. | |
dc.identifier.doi | doi.org/10.23939/ctas2020.02.127 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60818 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (3), 2020 | |
dc.relation.references | 1. Thomas, V., Namdeo, M., Murali Mohan, Y., Bajpai, S. K., & Bajpai, M. (2007). Review on Polymer, Hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. Journal of Macromolecular Science, Part A, 45, 107–119. https://doi.org/10.1080/10601320701683470. | |
dc.relation.references | 2. Schexnailder, P., & Schmidt, G. (2009). Nanocomposite polymer hydrogels. Colloid and Polymer Science, 287, 1–11. https://doi.org/10.1007/s00396-008-1949-0. | |
dc.relation.references | 3. Spanoudaki, A., Fragiadakis, D., Vartzeli-Nikaki, K., Pissis, P.; Hernandez, J. C. R., & Pradas, M.M. (2006). Nanostructured and nanocomposite hydrogels for biomedical applications. In J. P. Blitz, V. M. Gun'ko (Ed.), Surface Chemistry in Biomedical and Environmental Science (pp. 229–240). Dordrecht: Springer. https://doi.org/10.1007/1-4020-4741-X_20. | |
dc.relation.references | 4. Urban, G. A., & Weiss, T. (2009). Hydrogels for biosensors. In G. Gerlach, K. F. Arndt (Ed.), Hydrogel Sensors and Actuators. (pp. 197–220). Berlin: Springer. https://doi.org/10.1007/978-3-540-75645-3_6. | |
dc.relation.references | 5. Tan, N. P. B., Lee, C. H., & Li, P. (2016). Green synthesis of smart metal/polymer nanocomposite particles and their tuneable catalytic activities. Polymers, 8, 105–118. https://doi.org/10.3390/polym8040105. | |
dc.relation.references | 6. Sahiner, N. (2013). Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science, 38, 1329–1356. https://doi.org/10.1016/j.progpolymsci.2013.06.004. | |
dc.relation.references | 7. Zheng, Y., & Wang, A. (2012). Ag nanoparticleentrapped hydrogel as promising material for catalytic reduction of organic dyes. Journal of Materials Chemistry, 22, 16552–16559. doi:10.1039/c2jm32774k. | |
dc.relation.references | 8. Hapiot, F., Menuel, S., & Monflier, E. (2013). Thermoresponsive Hydrogels in Catalysis. ACS Catalysis, 3, 1006−1010. https://pubs.acs.org/doi/abs/10.1021/cs400118c. | |
dc.relation.references | 9. Sahiner, N., Ozay, H., Ozay, O., & Aktas, N. (2010). New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General, 385, 201–207. https://doi.org/10.1016/j.apcata.2010.07.004. | |
dc.relation.references | 10. Cai, H., Lu, P., & Dong, J. (2016). Robust nickelpolymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel, 166, 297–301. https://doi.org/10.1016/j.fuel.2015.11.011. | |
dc.relation.references | 11. Koval, Yu. B., Grytsenko, O.M., Suberlyak, O. V., & Voloshkevych, P. P. (2015). Vstanovlennya temperaturnoho rezhymu oderzhannya metalohidroheliv polivinilpirolidonu na stadiyi polimeryzatsiyi. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 812, 372–378. [in Ukrainian]. | |
dc.relation.references | 12. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429–434. doi: https://doi.org/10.23939/chcht09.04.429. | |
dc.relation.references | 13. Grytsenko, O. M., Hnatchuk N. M., & Suberlyak, O. V. (2013). Vplyv initsiyuvalnoyi systemy na strukturu ta vlastyvosti hidroheliv na osnovi kopolimeriv polivinilpirolidonu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy – Eastern-European Journal of Enterprise Technologies, 5/8(65), 59–63. [in Ukrainian]. | |
dc.relation.references | 14. Pokhmurska, A. V., Grytsenko, O. M., Suberlyak, O. V., & Gorbenko, N. Ye. (2019). Thermometric investigations of 2- hydroxyethylmethacrylate polymerization at the presence of olyvinylpyrrolidone with simultaneous nickel ions reduction. Naukovyy visnyk NLTU Ukrayiny – Scientific Bulletin of UNFU, 29(3), 99–103. [in Ukrainian]. https://doi.org/10.15421/40290321. | |
dc.relation.references | 15. Suberlyak, O. V., Skorokhoda, V. Y, & Tkhir, I. G. (1989). Sopolimery metakrilovykh efirov glikoley s PVP dlya polucheniya dializnykh membran. Zhurnal prikladnoy khimii – Journal of Applied Chemistry, 6, 1330–1333. [in Russian]. | |
dc.relation.references | 16. Wong, R., Ashton, M., & Dodou, K. (2015). Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics, 7, 305–319. https://doi.org/10.3390/pharmaceutics7030305. | |
dc.relation.references | 17. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In S. Haider, A. Haider (Ed.), Hydrogels (pp. 136–214). London: IntechOpen. DOI: 10.5772/intechopen.72082. | |
dc.relation.references | 18. Bühler, V. (2005). Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone. Berlin, Heidelberg: Springer. https://doi.org/10.1007/b138598 | |
dc.relation.references | 19. Khaslam, D., & Villis, G. (1971). Identifikatsiya i analiz polimerov: avtoriz. per. s angl. Moskva: Khimiya. [in Russian]. | |
dc.relation.references | 20. Semko, L. S., Kruchek, O. I., Dzyubenko, L. S., Horbyk, P. P., & Oranska, O. I. (2008). Peretvorennya v nanostrukturnykh poroshkakh nikelyu i nanokompozyti nikel/dekstran. Nanosystemy, nanomaterialy, nanotekhnolohiyi – Nanosystems, nanomaterials, nanotechnologies, 6, 1, 137–146. [in Ukrainian]. | |
dc.relation.references | 21. Grytsenko, O. M., Skorokhoda, V. Y., & Yadushyns`kyy R. Ya. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 488, 300–303. [in Ukrainian]. | |
dc.relation.references | 22. Suberlyak, O. V.; Hrytsenko, O. M.; & Hishchak, K. Y. (2016). Influence of the metal surface of powder filler om the structure and properties of composite materials based on the co-polymers of methacrylates with polyvinylpyrrolidone. Materials Science, 52, 155–164. https://doi.org/10.1007/s11003-016-9938-9 | |
dc.relation.references | 23. Grytsenko, O. M. (2006). Doslidzhennya kompleksoutvorennya v systemi polivinilpirolidon-metakrylat-ion metalu. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 533, 295–298. [in Ukrainian]. | |
dc.relation.references | 24. Grytsenko, O. M., Suberlyak, O. V., Moravskyy, V. S., & Gayduk, A. V. (2016). Doslidzhennya kinetychnykh zakonomirnostey khimichnoho osadzhennya nikelyu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy – Eastern-European Journal of Enterprise Technologies, 1/6(79), 26–31. [in Ukrainian]. https://doi.org/10.15587/1729-4061.2016.59506. | |
dc.relation.referencesen | 1. Thomas, V., Namdeo, M., Murali Mohan, Y., Bajpai, S. K., & Bajpai, M. (2007). Review on Polymer, Hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. Journal of Macromolecular Science, Part A, 45, 107–119. https://doi.org/10.1080/10601320701683470. | |
dc.relation.referencesen | 2. Schexnailder, P., & Schmidt, G. (2009). Nanocomposite polymer hydrogels. Colloid and Polymer Science, 287, 1–11. https://doi.org/10.1007/s00396-008-1949-0. | |
dc.relation.referencesen | 3. Spanoudaki, A., Fragiadakis, D., Vartzeli-Nikaki, K., Pissis, P.; Hernandez, J. C. R., & Pradas, M.M. (2006). Nanostructured and nanocomposite hydrogels for biomedical applications. In J. P. Blitz, V. M. Gun'ko (Ed.), Surface Chemistry in Biomedical and Environmental Science (pp. 229–240). Dordrecht: Springer. https://doi.org/10.1007/1-4020-4741-X_20. | |
dc.relation.referencesen | 4. Urban, G. A., & Weiss, T. (2009). Hydrogels for biosensors. In G. Gerlach, K. F. Arndt (Ed.), Hydrogel Sensors and Actuators. (pp. 197–220). Berlin: Springer. https://doi.org/10.1007/978-3-540-75645-3_6. | |
dc.relation.referencesen | 5. Tan, N. P. B., Lee, C. H., & Li, P. (2016). Green synthesis of smart metal/polymer nanocomposite particles and their tuneable catalytic activities. Polymers, 8, 105–118. https://doi.org/10.3390/polym8040105. | |
dc.relation.referencesen | 6. Sahiner, N. (2013). Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science, 38, 1329–1356. https://doi.org/10.1016/j.progpolymsci.2013.06.004. | |
dc.relation.referencesen | 7. Zheng, Y., & Wang, A. (2012). Ag nanoparticleentrapped hydrogel as promising material for catalytic reduction of organic dyes. Journal of Materials Chemistry, 22, 16552–16559. doi:10.1039/P.2jm32774k. | |
dc.relation.referencesen | 8. Hapiot, F., Menuel, S., & Monflier, E. (2013). Thermoresponsive Hydrogels in Catalysis. ACS Catalysis, 3, 1006−1010. https://pubs.acs.org/doi/abs/10.1021/cs400118c. | |
dc.relation.referencesen | 9. Sahiner, N., Ozay, H., Ozay, O., & Aktas, N. (2010). New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General, 385, 201–207. https://doi.org/10.1016/j.apcata.2010.07.004. | |
dc.relation.referencesen | 10. Cai, H., Lu, P., & Dong, J. (2016). Robust nickelpolymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel, 166, 297–301. https://doi.org/10.1016/j.fuel.2015.11.011. | |
dc.relation.referencesen | 11. Koval, Yu. B., Grytsenko, O.M., Suberlyak, O. V., & Voloshkevych, P. P. (2015). Vstanovlennya temperaturnoho rezhymu oderzhannya metalohidroheliv polivinilpirolidonu na stadiyi polimeryzatsiyi. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 812, 372–378. [in Ukrainian]. | |
dc.relation.referencesen | 12. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429–434. doi: https://doi.org/10.23939/chcht09.04.429. | |
dc.relation.referencesen | 13. Grytsenko, O. M., Hnatchuk N. M., & Suberlyak, O. V. (2013). Vplyv initsiyuvalnoyi systemy na strukturu ta vlastyvosti hidroheliv na osnovi kopolimeriv polivinilpirolidonu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy – Eastern-European Journal of Enterprise Technologies, 5/8(65), 59–63. [in Ukrainian]. | |
dc.relation.referencesen | 14. Pokhmurska, A. V., Grytsenko, O. M., Suberlyak, O. V., & Gorbenko, N. Ye. (2019). Thermometric investigations of 2- hydroxyethylmethacrylate polymerization at the presence of olyvinylpyrrolidone with simultaneous nickel ions reduction. Naukovyy visnyk NLTU Ukrayiny – Scientific Bulletin of UNFU, 29(3), 99–103. [in Ukrainian]. https://doi.org/10.15421/40290321. | |
dc.relation.referencesen | 15. Suberlyak, O. V., Skorokhoda, V. Y, & Tkhir, I. G. (1989). Sopolimery metakrilovykh efirov glikoley s PVP dlya polucheniya dializnykh membran. Zhurnal prikladnoy khimii – Journal of Applied Chemistry, 6, 1330–1333. [in Russian]. | |
dc.relation.referencesen | 16. Wong, R., Ashton, M., & Dodou, K. (2015). Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics, 7, 305–319. https://doi.org/10.3390/pharmaceutics7030305. | |
dc.relation.referencesen | 17. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In S. Haider, A. Haider (Ed.), Hydrogels (pp. 136–214). London: IntechOpen. DOI: 10.5772/intechopen.72082. | |
dc.relation.referencesen | 18. Bühler, V. (2005). Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone. Berlin, Heidelberg: Springer. https://doi.org/10.1007/b138598 | |
dc.relation.referencesen | 19. Khaslam, D., & Villis, G. (1971). Identifikatsiya i analiz polimerov: avtoriz. per. s angl. Moskva: Khimiya. [in Russian]. | |
dc.relation.referencesen | 20. Semko, L. S., Kruchek, O. I., Dzyubenko, L. S., Horbyk, P. P., & Oranska, O. I. (2008). Peretvorennya v nanostrukturnykh poroshkakh nikelyu i nanokompozyti nikel/dekstran. Nanosystemy, nanomaterialy, nanotekhnolohiyi – Nanosystems, nanomaterials, nanotechnologies, 6, 1, 137–146. [in Ukrainian]. | |
dc.relation.referencesen | 21. Grytsenko, O. M., Skorokhoda, V. Y., & Yadushyns`kyy R. Ya. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 488, 300–303. [in Ukrainian]. | |
dc.relation.referencesen | 22. Suberlyak, O. V.; Hrytsenko, O. M.; & Hishchak, K. Y. (2016). Influence of the metal surface of powder filler om the structure and properties of composite materials based on the co-polymers of methacrylates with polyvinylpyrrolidone. Materials Science, 52, 155–164. https://doi.org/10.1007/s11003-016-9938-9 | |
dc.relation.referencesen | 23. Grytsenko, O. M. (2006). Doslidzhennya kompleksoutvorennya v systemi polivinilpirolidon-metakrylat-ion metalu. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 533, 295–298. [in Ukrainian]. | |
dc.relation.referencesen | 24. Grytsenko, O. M., Suberlyak, O. V., Moravskyy, V. S., & Gayduk, A. V. (2016). Doslidzhennya kinetychnykh zakonomirnostey khimichnoho osadzhennya nikelyu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy – Eastern-European Journal of Enterprise Technologies, 1/6(79), 26–31. [in Ukrainian]. https://doi.org/10.15587/1729-4061.2016.59506. | |
dc.relation.uri | https://doi.org/10.1080/10601320701683470 | |
dc.relation.uri | https://doi.org/10.1007/s00396-008-1949-0 | |
dc.relation.uri | https://doi.org/10.1007/1-4020-4741-X_20 | |
dc.relation.uri | https://doi.org/10.1007/978-3-540-75645-3_6 | |
dc.relation.uri | https://doi.org/10.3390/polym8040105 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2013.06.004 | |
dc.relation.uri | https://pubs.acs.org/doi/abs/10.1021/cs400118c | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2010.07.004 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2015.11.011 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.04.429 | |
dc.relation.uri | https://doi.org/10.15421/40290321 | |
dc.relation.uri | https://doi.org/10.3390/pharmaceutics7030305 | |
dc.relation.uri | https://doi.org/10.1007/b138598 | |
dc.relation.uri | https://doi.org/10.1007/s11003-016-9938-9 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2016.59506 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.subject | нікель | |
dc.subject | полівінілпіролідон | |
dc.subject | 2-гідроксіетилметакрилат | |
dc.subject | гідрогелі | |
dc.subject | нікель-наповнені гідрогелі | |
dc.subject | nickel | |
dc.subject | polyvinylpyrrolidone | |
dc.subject | 2-hydroxyethylmethacrylate | |
dc.subject | hydrogels | |
dc.subject | nickel-containing hydrogels | |
dc.title | Особливості формування структури нікельнаповнених кополімерів полівінілпіролідону під час полімеризації з одночасним відновленням Ni2+ | |
dc.title.alternative | Structure formation peculiarities of nickel-filled polyvinylpyrrolidone copolymers during polymerization with simultaneous Ni2+ reduction | |
dc.type | Article |
Files
License bundle
1 - 1 of 1