Особливості формування структури нікельнаповнених кополімерів полівінілпіролідону під час полімеризації з одночасним відновленням Ni2+

dc.citation.epage134
dc.citation.issue2
dc.citation.spage127
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationТехнічний університет Кошице
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnical University of Košice
dc.contributor.authorГриценко, О. М.
dc.contributor.authorСуберляк, О. В.
dc.contributor.authorДулебова, Л.
dc.contributor.authorГайдос, І.
dc.contributor.authorБережний, Б. В.
dc.contributor.authorGrytsenko, O. M.
dc.contributor.authorSuberlyak, O. V.
dc.contributor.authorDulebova, L.
dc.contributor.authorGaydos, I.
dc.contributor.authorBerezhnyy, B. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T07:35:28Z
dc.date.available2024-01-22T07:35:28Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractПідтверджено перебіг прищепленої полімеризації 2-гідроксіетилметакрилату на полівінілпіролідоні з утворенням сітчастого кополімеру одночасно з хімічним відновленням йонів нікелю. Встановлено вплив процесу відновлення на структурні параметри полімерної матриці – ефективність прищеплення та вміст полівінілпіролідону у кополімері, молекулярну масу міжвузлового фрагмента полімерної сітки. Досліджено вплив присутності компонентів полімер-мономерної композиції на формування частинок нікелевого наповнювача. Встановлено, що відновлення йонів нікелю в процесі полімеризації сприяє рівномірному розподілу утворених частинок металу в об’ємі полімерної матриці.
dc.description.abstractThe course of the grafted polymerization of 2-hydroxyethylmethacrylate on polyvinylpyrrolidone with the formation of a reticulated copolymer with simultaneously chemical reduction of nickel ions is confirmed. The influence of the reduction process on the structural parameters of the polymeric matrix – the grafting efficiency and the content of polyvinylpyrrolidone in the copolymer, the molecular weight between crosslinks is established. The influence of the presence of polymer-monomer composition components on the particles formation of nickel filler is investigated. It has been found that the nickel ions reduction during the polymerization process promotes a uniform distribution of the formed metal particles in the polymer matrix volume.
dc.format.extent127-134
dc.format.pages8
dc.identifier.citationОсобливості формування структури нікельнаповнених кополімерів полівінілпіролідону під час полімеризації з одночасним відновленням Ni2+ / О. М. Гриценко, О. В. Суберляк, Л. Дулебова, І. Гайдос, Б. В. Бережний // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2020. — Том 3. — № 2. — С. 127–134.
dc.identifier.citationenStructure formation peculiarities of nickel-filled polyvinylpyrrolidone copolymers during polymerization with simultaneous Ni2+ reduction / O. M. Grytsenko, O. V. Suberlyak, L. Dulebova, I. Gaydos, B. V. Berezhnyy // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 127–134.
dc.identifier.doidoi.org/10.23939/ctas2020.02.127
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60818
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (3), 2020
dc.relation.references1. Thomas, V., Namdeo, M., Murali Mohan, Y., Bajpai, S. K., & Bajpai, M. (2007). Review on Polymer, Hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. Journal of Macromolecular Science, Part A, 45, 107–119. https://doi.org/10.1080/10601320701683470.
dc.relation.references2. Schexnailder, P., & Schmidt, G. (2009). Nanocomposite polymer hydrogels. Colloid and Polymer Science, 287, 1–11. https://doi.org/10.1007/s00396-008-1949-0.
dc.relation.references3. Spanoudaki, A., Fragiadakis, D., Vartzeli-Nikaki, K., Pissis, P.; Hernandez, J. C. R., & Pradas, M.M. (2006). Nanostructured and nanocomposite hydrogels for biomedical applications. In J. P. Blitz, V. M. Gun'ko (Ed.), Surface Chemistry in Biomedical and Environmental Science (pp. 229–240). Dordrecht: Springer. https://doi.org/10.1007/1-4020-4741-X_20.
dc.relation.references4. Urban, G. A., & Weiss, T. (2009). Hydrogels for biosensors. In G. Gerlach, K. F. Arndt (Ed.), Hydrogel Sensors and Actuators. (pp. 197–220). Berlin: Springer. https://doi.org/10.1007/978-3-540-75645-3_6.
dc.relation.references5. Tan, N. P. B., Lee, C. H., & Li, P. (2016). Green synthesis of smart metal/polymer nanocomposite particles and their tuneable catalytic activities. Polymers, 8, 105–118. https://doi.org/10.3390/polym8040105.
dc.relation.references6. Sahiner, N. (2013). Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science, 38, 1329–1356. https://doi.org/10.1016/j.progpolymsci.2013.06.004.
dc.relation.references7. Zheng, Y., & Wang, A. (2012). Ag nanoparticleentrapped hydrogel as promising material for catalytic reduction of organic dyes. Journal of Materials Chemistry, 22, 16552–16559. doi:10.1039/c2jm32774k.
dc.relation.references8. Hapiot, F., Menuel, S., & Monflier, E. (2013). Thermoresponsive Hydrogels in Catalysis. ACS Catalysis, 3, 1006−1010. https://pubs.acs.org/doi/abs/10.1021/cs400118c.
dc.relation.references9. Sahiner, N., Ozay, H., Ozay, O., & Aktas, N. (2010). New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General, 385, 201–207. https://doi.org/10.1016/j.apcata.2010.07.004.
dc.relation.references10. Cai, H., Lu, P., & Dong, J. (2016). Robust nickelpolymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel, 166, 297–301. https://doi.org/10.1016/j.fuel.2015.11.011.
dc.relation.references11. Koval, Yu. B., Grytsenko, O.M., Suberlyak, O. V., & Voloshkevych, P. P. (2015). Vstanovlennya temperaturnoho rezhymu oderzhannya metalohidroheliv polivinilpirolidonu na stadiyi polimeryzatsiyi. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 812, 372–378. [in Ukrainian].
dc.relation.references12. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429–434. doi: https://doi.org/10.23939/chcht09.04.429.
dc.relation.references13. Grytsenko, O. M., Hnatchuk N. M., & Suberlyak, O. V. (2013). Vplyv initsiyuvalnoyi systemy na strukturu ta vlastyvosti hidroheliv na osnovi kopolimeriv polivinilpirolidonu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy – Eastern-European Journal of Enterprise Technologies, 5/8(65), 59–63. [in Ukrainian].
dc.relation.references14. Pokhmurska, A. V., Grytsenko, O. M., Suberlyak, O. V., & Gorbenko, N. Ye. (2019). Thermometric investigations of 2- hydroxyethylmethacrylate polymerization at the presence of olyvinylpyrrolidone with simultaneous nickel ions reduction. Naukovyy visnyk NLTU Ukrayiny – Scientific Bulletin of UNFU, 29(3), 99–103. [in Ukrainian]. https://doi.org/10.15421/40290321.
dc.relation.references15. Suberlyak, O. V., Skorokhoda, V. Y, & Tkhir, I. G. (1989). Sopolimery metakrilovykh efirov glikoley s PVP dlya polucheniya dializnykh membran. Zhurnal prikladnoy khimii – Journal of Applied Chemistry, 6, 1330–1333. [in Russian].
dc.relation.references16. Wong, R., Ashton, M., & Dodou, K. (2015). Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics, 7, 305–319. https://doi.org/10.3390/pharmaceutics7030305.
dc.relation.references17. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In S. Haider, A. Haider (Ed.), Hydrogels (pp. 136–214). London: IntechOpen. DOI: 10.5772/intechopen.72082.
dc.relation.references18. Bühler, V. (2005). Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone. Berlin, Heidelberg: Springer. https://doi.org/10.1007/b138598
dc.relation.references19. Khaslam, D., & Villis, G. (1971). Identifikatsiya i analiz polimerov: avtoriz. per. s angl. Moskva: Khimiya. [in Russian].
dc.relation.references20. Semko, L. S., Kruchek, O. I., Dzyubenko, L. S., Horbyk, P. P., & Oranska, O. I. (2008). Peretvorennya v nanostrukturnykh poroshkakh nikelyu i nanokompozyti nikel/dekstran. Nanosystemy, nanomaterialy, nanotekhnolohiyi – Nanosystems, nanomaterials, nanotechnologies, 6, 1, 137–146. [in Ukrainian].
dc.relation.references21. Grytsenko, O. M., Skorokhoda, V. Y., & Yadushyns`kyy R. Ya. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 488, 300–303. [in Ukrainian].
dc.relation.references22. Suberlyak, O. V.; Hrytsenko, O. M.; & Hishchak, K. Y. (2016). Influence of the metal surface of powder filler om the structure and properties of composite materials based on the co-polymers of methacrylates with polyvinylpyrrolidone. Materials Science, 52, 155–164. https://doi.org/10.1007/s11003-016-9938-9
dc.relation.references23. Grytsenko, O. M. (2006). Doslidzhennya kompleksoutvorennya v systemi polivinilpirolidon-metakrylat-ion metalu. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 533, 295–298. [in Ukrainian].
dc.relation.references24. Grytsenko, O. M., Suberlyak, O. V., Moravskyy, V. S., & Gayduk, A. V. (2016). Doslidzhennya kinetychnykh zakonomirnostey khimichnoho osadzhennya nikelyu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy – Eastern-European Journal of Enterprise Technologies, 1/6(79), 26–31. [in Ukrainian]. https://doi.org/10.15587/1729-4061.2016.59506.
dc.relation.referencesen1. Thomas, V., Namdeo, M., Murali Mohan, Y., Bajpai, S. K., & Bajpai, M. (2007). Review on Polymer, Hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. Journal of Macromolecular Science, Part A, 45, 107–119. https://doi.org/10.1080/10601320701683470.
dc.relation.referencesen2. Schexnailder, P., & Schmidt, G. (2009). Nanocomposite polymer hydrogels. Colloid and Polymer Science, 287, 1–11. https://doi.org/10.1007/s00396-008-1949-0.
dc.relation.referencesen3. Spanoudaki, A., Fragiadakis, D., Vartzeli-Nikaki, K., Pissis, P.; Hernandez, J. C. R., & Pradas, M.M. (2006). Nanostructured and nanocomposite hydrogels for biomedical applications. In J. P. Blitz, V. M. Gun'ko (Ed.), Surface Chemistry in Biomedical and Environmental Science (pp. 229–240). Dordrecht: Springer. https://doi.org/10.1007/1-4020-4741-X_20.
dc.relation.referencesen4. Urban, G. A., & Weiss, T. (2009). Hydrogels for biosensors. In G. Gerlach, K. F. Arndt (Ed.), Hydrogel Sensors and Actuators. (pp. 197–220). Berlin: Springer. https://doi.org/10.1007/978-3-540-75645-3_6.
dc.relation.referencesen5. Tan, N. P. B., Lee, C. H., & Li, P. (2016). Green synthesis of smart metal/polymer nanocomposite particles and their tuneable catalytic activities. Polymers, 8, 105–118. https://doi.org/10.3390/polym8040105.
dc.relation.referencesen6. Sahiner, N. (2013). Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science, 38, 1329–1356. https://doi.org/10.1016/j.progpolymsci.2013.06.004.
dc.relation.referencesen7. Zheng, Y., & Wang, A. (2012). Ag nanoparticleentrapped hydrogel as promising material for catalytic reduction of organic dyes. Journal of Materials Chemistry, 22, 16552–16559. doi:10.1039/P.2jm32774k.
dc.relation.referencesen8. Hapiot, F., Menuel, S., & Monflier, E. (2013). Thermoresponsive Hydrogels in Catalysis. ACS Catalysis, 3, 1006−1010. https://pubs.acs.org/doi/abs/10.1021/cs400118c.
dc.relation.referencesen9. Sahiner, N., Ozay, H., Ozay, O., & Aktas, N. (2010). New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General, 385, 201–207. https://doi.org/10.1016/j.apcata.2010.07.004.
dc.relation.referencesen10. Cai, H., Lu, P., & Dong, J. (2016). Robust nickelpolymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel, 166, 297–301. https://doi.org/10.1016/j.fuel.2015.11.011.
dc.relation.referencesen11. Koval, Yu. B., Grytsenko, O.M., Suberlyak, O. V., & Voloshkevych, P. P. (2015). Vstanovlennya temperaturnoho rezhymu oderzhannya metalohidroheliv polivinilpirolidonu na stadiyi polimeryzatsiyi. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 812, 372–378. [in Ukrainian].
dc.relation.referencesen12. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429–434. doi: https://doi.org/10.23939/chcht09.04.429.
dc.relation.referencesen13. Grytsenko, O. M., Hnatchuk N. M., & Suberlyak, O. V. (2013). Vplyv initsiyuvalnoyi systemy na strukturu ta vlastyvosti hidroheliv na osnovi kopolimeriv polivinilpirolidonu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy – Eastern-European Journal of Enterprise Technologies, 5/8(65), 59–63. [in Ukrainian].
dc.relation.referencesen14. Pokhmurska, A. V., Grytsenko, O. M., Suberlyak, O. V., & Gorbenko, N. Ye. (2019). Thermometric investigations of 2- hydroxyethylmethacrylate polymerization at the presence of olyvinylpyrrolidone with simultaneous nickel ions reduction. Naukovyy visnyk NLTU Ukrayiny – Scientific Bulletin of UNFU, 29(3), 99–103. [in Ukrainian]. https://doi.org/10.15421/40290321.
dc.relation.referencesen15. Suberlyak, O. V., Skorokhoda, V. Y, & Tkhir, I. G. (1989). Sopolimery metakrilovykh efirov glikoley s PVP dlya polucheniya dializnykh membran. Zhurnal prikladnoy khimii – Journal of Applied Chemistry, 6, 1330–1333. [in Russian].
dc.relation.referencesen16. Wong, R., Ashton, M., & Dodou, K. (2015). Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics, 7, 305–319. https://doi.org/10.3390/pharmaceutics7030305.
dc.relation.referencesen17. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In S. Haider, A. Haider (Ed.), Hydrogels (pp. 136–214). London: IntechOpen. DOI: 10.5772/intechopen.72082.
dc.relation.referencesen18. Bühler, V. (2005). Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone. Berlin, Heidelberg: Springer. https://doi.org/10.1007/b138598
dc.relation.referencesen19. Khaslam, D., & Villis, G. (1971). Identifikatsiya i analiz polimerov: avtoriz. per. s angl. Moskva: Khimiya. [in Russian].
dc.relation.referencesen20. Semko, L. S., Kruchek, O. I., Dzyubenko, L. S., Horbyk, P. P., & Oranska, O. I. (2008). Peretvorennya v nanostrukturnykh poroshkakh nikelyu i nanokompozyti nikel/dekstran. Nanosystemy, nanomaterialy, nanotekhnolohiyi – Nanosystems, nanomaterials, nanotechnologies, 6, 1, 137–146. [in Ukrainian].
dc.relation.referencesen21. Grytsenko, O. M., Skorokhoda, V. Y., & Yadushyns`kyy R. Ya. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 488, 300–303. [in Ukrainian].
dc.relation.referencesen22. Suberlyak, O. V.; Hrytsenko, O. M.; & Hishchak, K. Y. (2016). Influence of the metal surface of powder filler om the structure and properties of composite materials based on the co-polymers of methacrylates with polyvinylpyrrolidone. Materials Science, 52, 155–164. https://doi.org/10.1007/s11003-016-9938-9
dc.relation.referencesen23. Grytsenko, O. M. (2006). Doslidzhennya kompleksoutvorennya v systemi polivinilpirolidon-metakrylat-ion metalu. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 533, 295–298. [in Ukrainian].
dc.relation.referencesen24. Grytsenko, O. M., Suberlyak, O. V., Moravskyy, V. S., & Gayduk, A. V. (2016). Doslidzhennya kinetychnykh zakonomirnostey khimichnoho osadzhennya nikelyu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy – Eastern-European Journal of Enterprise Technologies, 1/6(79), 26–31. [in Ukrainian]. https://doi.org/10.15587/1729-4061.2016.59506.
dc.relation.urihttps://doi.org/10.1080/10601320701683470
dc.relation.urihttps://doi.org/10.1007/s00396-008-1949-0
dc.relation.urihttps://doi.org/10.1007/1-4020-4741-X_20
dc.relation.urihttps://doi.org/10.1007/978-3-540-75645-3_6
dc.relation.urihttps://doi.org/10.3390/polym8040105
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2013.06.004
dc.relation.urihttps://pubs.acs.org/doi/abs/10.1021/cs400118c
dc.relation.urihttps://doi.org/10.1016/j.apcata.2010.07.004
dc.relation.urihttps://doi.org/10.1016/j.fuel.2015.11.011
dc.relation.urihttps://doi.org/10.23939/chcht09.04.429
dc.relation.urihttps://doi.org/10.15421/40290321
dc.relation.urihttps://doi.org/10.3390/pharmaceutics7030305
dc.relation.urihttps://doi.org/10.1007/b138598
dc.relation.urihttps://doi.org/10.1007/s11003-016-9938-9
dc.relation.urihttps://doi.org/10.15587/1729-4061.2016.59506
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectнікель
dc.subjectполівінілпіролідон
dc.subject2-гідроксіетилметакрилат
dc.subjectгідрогелі
dc.subjectнікель-наповнені гідрогелі
dc.subjectnickel
dc.subjectpolyvinylpyrrolidone
dc.subject2-hydroxyethylmethacrylate
dc.subjecthydrogels
dc.subjectnickel-containing hydrogels
dc.titleОсобливості формування структури нікельнаповнених кополімерів полівінілпіролідону під час полімеризації з одночасним відновленням Ni2+
dc.title.alternativeStructure formation peculiarities of nickel-filled polyvinylpyrrolidone copolymers during polymerization with simultaneous Ni2+ reduction
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2020v3n2_Grytsenko_O_M-Structure_formation_127-134.pdf
Size:
905.68 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2020v3n2_Grytsenko_O_M-Structure_formation_127-134__COVER.png
Size:
489.8 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: