Composite materials for strengthening of reinforced concrete structures – a review
| dc.citation.epage | 101 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Теорія та будівельна практика | |
| dc.citation.spage | 96 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Литвиненко, І. Ю. | |
| dc.contributor.author | Бліхарський, Я. З. | |
| dc.contributor.author | Lytvynenko, Illia | |
| dc.contributor.author | Blikharskyy, Yaroslav | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-04T09:42:46Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | У статті досліджено застосування композитних матеріалів для підсилення та відновлення будівельних конструкцій. Композитними називають матеріали, котрі складаються з двох чи більше компонентів чи фаз. Серед найвживаніших у будівництві на нині є ламінати, полотна, сітки, арматурні стержні та канати, виготовлені з високоміцних волокон різного походження. Основними компонентами будь-якого композиту є високоміцні волокна, котрі сприймають навантаження, і стабілізувальна матриця призначена для передавання зусиль на волокна. У композитах застосовують такі види високоміцних волокон: скловолокна, вуглецеві волокна, органічні волокна, силіконо-вуглецеві, алюмінієво-силіконові волокна та інші. Матрицею можуть бути: полімери, метали, скло, кераміка, цементний розчин, вуглець у різних фазах. Для вирішення проблем підсилення будівельних конструкцій найчастіше користуються композитними матеріалами з полімерною Fiber Reinforced Polymer чи цементною Fiber Reinforced Cement матрицями, а також стержнями неметалевої арматури, тому надалі зосередимо свою увагу саме на них. Історично першими виникли та набули поширення FRP композити, тому уже опубліковано дуже багато досліджень цих матеріалів. Проте, зважаючи на низку недоліків полімерів як стабілізувальної матриці, дослідники почали розробляти та досліджувати нові неорганічні матриці на основі цементних в’яжучих. Так з’явились FRC композити. Бетонні конструкції армовані неметалевою композитною арматурою поки що не застосовують у будівництві відповідальних споруд через недостатню роботу таких конструкцій.Деформування та руйнування конструкцій, армованих композитною арматурою, відрізняється від деформування та руйнування залізобетонних конструкцій унаслідок відмінних фізико-механічних характеристик металевої та неметалевої арматури. | |
| dc.description.abstract | This study reviews the current state of research and limitations on the fatigue strength of web-flange connections in steel runway beams for overhead cranes. It evaluates key factors influencing fatigue strength, including stress-strain behavior, notch classifications, and various web-flange configurations (welded, rolled, combined). The research stresses the need for accurate fatigue life assessments, particularly for both new and older structures built with simplified standards. Key findings show the impact of notch classifications and stress interactions due to bending, tensile, and compressive forces. The study aims to improve calculation methods, offering recommendations for refining fatigue verification techniques, and assesses connection configurations' effectiveness in achieving desired fatigue life. The practical implications point to increased steel crane runway beams' durability through better fatigue life prediction and localized stress analysis. | |
| dc.format.extent | 96-101 | |
| dc.format.pages | 6 | |
| dc.identifier.citation | Lytvynenko I. Composite materials for strengthening of reinforced concrete structures – a review / Illia Lytvynenko, Yaroslav Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 96–101. | |
| dc.identifier.citationen | Lytvynenko I. Composite materials for strengthening of reinforced concrete structures – a review / Illia Lytvynenko, Yaroslav Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 96–101. | |
| dc.identifier.doi | doi.org/10.23939/jtbp2024.02.096 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/117192 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Теорія та будівельна практика, 2 (6), 2024 | |
| dc.relation.ispartof | Theory and Building Practice, 2 (6), 2024 | |
| dc.relation.references | Yao, J., Zhou, Z., Zhou, H., Yao, J., Zhou, Z., & Zhou, H. (2019). Introduction to composite materials. Highway Engineering Composite Material and Its Application, 1-23. https://doi.org/10.1007/978-981-13-6068-8_1 | |
| dc.relation.references | Biswal, A., & Swain, S. K. (2020). Smart composite materials for civil engineering applications. In Polymer nanocomposite-based smart materials, pp. 197-210. https://doi.org/10.1016/B978-0-08-103013-4.00011-X | |
| dc.relation.references | Huang, X., Su, S., Xu, Z., Miao, Q., Li, W., & Wang, L. (2023). Advanced composite materials for structure strengthening and resilience improvement. Buildings, 13(10), 2406. https://doi.org/10.3390/buildings13102406 | |
| dc.relation.references | Zhang, P., Han, S., Golewski, G. L., & Wang, X. (2020). Nanoparticle-reinforced building materials with applications in civil engineering. Advances in Mechanical Engineering, 12(10), 1687814020965438. https://doi.org/10.1177/1687814020965438 | |
| dc.relation.references | Abavisani, I., Rezaifar, O., & Kheyroddin, A. (2021). Multifunctional properties of shape memory materials in civil engineering applications: A state-of-the-art review. Journal of Building Engineering, 44, 102657. https://doi.org/10.1016/j.jobe.2021.102657 | |
| dc.relation.references | Mukherjee, A., Srivastava, P., & Sandhu, J. K. (2023). Application of smart materials in civil engineering: A review. Materials Today: Proceedings, 81, 350-359. https://doi.org/10.1016/j.matpr.2021.03.304 | |
| dc.relation.references | Egbo, M. K. (2021). A fundamental review on composite materials and some of their applications in biomedical engineering. Journal of King Saud University-Engineering Sciences, 33(8), 557-568. https://doi.org/10.1016/j.jksues.2020.07.007 | |
| dc.relation.references | Aziz, T., Haq, F., Farid, A., Kiran, M., Faisal, S., Ullah, A., ... & Show, P. L. (2023). Challenges associated with cellulose composite material: Facet engineering and prospective. Environmental Research, 223, 115429. https://doi.org/10.1016/j.envres.2023.115429 | |
| dc.relation.references | Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite structures, 262, 113640. https://doi.org/10.1016/j.compstruct.2021.113640 | |
| dc.relation.references | Godara, S. S., Yadav, A., Goswami, B., & Rana, R. S. (2021). Review on history and characterization of polymer composite materials. Materials Today: Proceedings, 44, 2674-2677. https://doi.org/10.1016/j.matpr.2020.12.680 | |
| dc.relation.references | Gupta, R., Mitchell, D., Blanche, J., Harper, S., Tang, W., Pancholi, K., ... & Flynn, D. (2021). A review of sensing technologies for non-destructive evaluation of structural composite materials. Journal of Composites Science, 5(12), 319. https://doi.org/10.3390/jcs5120319 | |
| dc.relation.references | Burgoyne, C. J. (1999). Advanced composites in civil engineering in Europe. Structural Engineering International, 9(4), 267-273. https://doi.org/10.2749/101686699780481682 | |
| dc.relation.references | Meier, U., & Farshad, M. (1996). Connecting high-performance carbon-fiber-reinforced polymer cables of suspension and cable-stayed bridges through the use of gradient materials. Journal of Computer-Aided Materials Design, 3, 379-384. | |
| dc.relation.references | Meier, U. (1987). Proposal for a carbon fibre reinforced composite bridge across the Strait of Gibraltar at its narrowest site. Proceedings of the Institution of Mechanical Engineers, Part B: Management and engineering manufacture, 201(2), 73-78. https://doi.org/10.1243/PIME_PROC_1987_201_048_02 | |
| dc.relation.references | Richmond, R., & Head, P. R. (1988, June). Alternative materials in long-span bridge structures. In Proceedings of the 1st Oleg Kerensky Memorial Conference on Tension Structures, London. https://www.istructe.org/journal/volumes/volume-66-(published-in-1988)/issue-12/1st-international-oleg-kerensky-memorial-conferenc/ | |
| dc.relation.references | Hay, J. (1992). Response of bridges to wind. Her majesty's stationery office, London, UK. 179 p. https://trid.trb.org/View/376925 | |
| dc.relation.references | Buyle-Bodin, F., Benhouna, M., & Convain, M. (1995, August). 28 Flexural behaviour of JITEC-FRP reinforced beams. In Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium (Vol. 29, p. 235). CRC Press. https://books.google.com/books?hl=uk&lr=&id=8Xe-n2zA_nMC&oi=fnd&pg=PA235... | |
| dc.relation.references | Hall, J. E., & Mottram, J. T. (1998). Combined FRP reinforcement and permanent formwork for concrete members. Journal of Composites for Construction, 2(2), 78-86. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(78) | |
| dc.relation.references | O'Regan, D. P., Clarke, J. L., & Dill, M. J. (1996). Site testing and monitoring of Fidgett Footbridge. Construction repair, 10(5), p. 29-31. https://trid.trb.org/View/469595 | |
| dc.relation.references | Nanni, A. (2000, March). FRP reinforcement for bridge structures. In Proceedings of Structural Engineering Conference. The University of Kansas, Lawrence, KS (p. 5). https://quakewrap.com/frp%20papers/FRP-Reinforcement-for-Bridge-Structur... | |
| dc.relation.references | Yan, X., Myers, J. J., & Nanni, A. (2000). An assessment of flexural behavior of CFRP prestressed beams subjected to incremental static loading. In ASCE Structures Congress. https://works.bepress.com/john-myers/cv/download/ | |
| dc.relation.references | Tahsiri, H., & Belarbi, A. (2022). Evaluation of prestress relaxation loss and harping characteristics of prestressing CFRP systems. Construction and Building Materials, 331, 127339. | |
| dc.relation.references | Jokūbaitis, A., & Valivonis, J. (2022). An analysis of the transfer lengths of different types of prestressed fiber-reinforced polymer reinforcement. Polymers, 14(19), 3931. https://doi.org/10.3390/polym14193931 | |
| dc.relation.references | Wight, R. G., Green, M. F., & Erki, M. A. (2001). Prestressed FRP sheets for poststrengthening reinforced concrete beams. Journal of composites for construction, 5(4), 214-220. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(214) | |
| dc.relation.references | Yu, P., Silva, P. F., & Nanni, A. (2003). Flexural performance of RC beams strengthened with prestressed CFRP sheets. Center for Infrastructure and Engineering Studies Department of Civil, Architectural, and Environmental Engineering University of Missouri-Rolla Rolla, MO, 65409-0030. https://www.researchgate.net/profile/Antonio-Nanni-3/publication/2374451... | |
| dc.relation.references | Wang, H. T., Liu, S. S., Zhu, C. Y., Xiong, H., & Xu, G. W. (2022). Experimental study on the flexural behavior of large-scale reinforced concrete beams strengthened with prestressed CFRP plates. Journal of Composites for Construction, 26(6), 04022076. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001267 | |
| dc.relation.references | Piyong, Y., Silva, P. F., & Nanni, A. (2003, September). Flexural strengthening of concrete slabs by a three-stage prestressing FRP system enhanced with the presence of GFRP anchor spikes. In Proceedings of the International Conference Composites in Construction (CCC2003) (Vol. 239244). University of Calabria Rende, Italy. https://quakewrap.com/frp%20papers/FlexuralStrengtheningofConcreteSlabby... | |
| dc.relation.references | C. P., & Gergely, J. (2008). Seismic retrofit of reinforced concrete beam-column T-joints in bridge piers with FRP composite jackets. Seismic Strengthening of Concrete Buildings Using FRP Composites, 258, 7. https://books.google.com/books?hl=uk&lr=&id=gI72a6OHeQIC&oi=fnd&pg=PA7&d... | |
| dc.relation.references | Triantafillou, T. C. (2001). Seismic retrofitting of structures with fibre‐reinforced polymers. Progress in Structural Engineering and Materials, 3(1), 57-65. https://doi.org/10.1002/pse.61 | |
| dc.relation.referencesen | Yao, J., Zhou, Z., Zhou, H., Yao, J., Zhou, Z., & Zhou, H. (2019). Introduction to composite materials. Highway Engineering Composite Material and Its Application, 1-23. https://doi.org/10.1007/978-981-13-6068-8_1 | |
| dc.relation.referencesen | Biswal, A., & Swain, S. K. (2020). Smart composite materials for civil engineering applications. In Polymer nanocomposite-based smart materials, pp. 197-210. https://doi.org/10.1016/B978-0-08-103013-4.00011-X | |
| dc.relation.referencesen | Huang, X., Su, S., Xu, Z., Miao, Q., Li, W., & Wang, L. (2023). Advanced composite materials for structure strengthening and resilience improvement. Buildings, 13(10), 2406. https://doi.org/10.3390/buildings13102406 | |
| dc.relation.referencesen | Zhang, P., Han, S., Golewski, G. L., & Wang, X. (2020). Nanoparticle-reinforced building materials with applications in civil engineering. Advances in Mechanical Engineering, 12(10), 1687814020965438. https://doi.org/10.1177/1687814020965438 | |
| dc.relation.referencesen | Abavisani, I., Rezaifar, O., & Kheyroddin, A. (2021). Multifunctional properties of shape memory materials in civil engineering applications: A state-of-the-art review. Journal of Building Engineering, 44, 102657. https://doi.org/10.1016/j.jobe.2021.102657 | |
| dc.relation.referencesen | Mukherjee, A., Srivastava, P., & Sandhu, J. K. (2023). Application of smart materials in civil engineering: A review. Materials Today: Proceedings, 81, 350-359. https://doi.org/10.1016/j.matpr.2021.03.304 | |
| dc.relation.referencesen | Egbo, M. K. (2021). A fundamental review on composite materials and some of their applications in biomedical engineering. Journal of King Saud University-Engineering Sciences, 33(8), 557-568. https://doi.org/10.1016/j.jksues.2020.07.007 | |
| dc.relation.referencesen | Aziz, T., Haq, F., Farid, A., Kiran, M., Faisal, S., Ullah, A., ... & Show, P. L. (2023). Challenges associated with cellulose composite material: Facet engineering and prospective. Environmental Research, 223, 115429. https://doi.org/10.1016/j.envres.2023.115429 | |
| dc.relation.referencesen | Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite structures, 262, 113640. https://doi.org/10.1016/j.compstruct.2021.113640 | |
| dc.relation.referencesen | Godara, S. S., Yadav, A., Goswami, B., & Rana, R. S. (2021). Review on history and characterization of polymer composite materials. Materials Today: Proceedings, 44, 2674-2677. https://doi.org/10.1016/j.matpr.2020.12.680 | |
| dc.relation.referencesen | Gupta, R., Mitchell, D., Blanche, J., Harper, S., Tang, W., Pancholi, K., ... & Flynn, D. (2021). A review of sensing technologies for non-destructive evaluation of structural composite materials. Journal of Composites Science, 5(12), 319. https://doi.org/10.3390/jcs5120319 | |
| dc.relation.referencesen | Burgoyne, C. J. (1999). Advanced composites in civil engineering in Europe. Structural Engineering International, 9(4), 267-273. https://doi.org/10.2749/101686699780481682 | |
| dc.relation.referencesen | Meier, U., & Farshad, M. (1996). Connecting high-performance carbon-fiber-reinforced polymer cables of suspension and cable-stayed bridges through the use of gradient materials. Journal of Computer-Aided Materials Design, 3, 379-384. | |
| dc.relation.referencesen | Meier, U. (1987). Proposal for a carbon fibre reinforced composite bridge across the Strait of Gibraltar at its narrowest site. Proceedings of the Institution of Mechanical Engineers, Part B: Management and engineering manufacture, 201(2), 73-78. https://doi.org/10.1243/PIME_PROC_1987_201_048_02 | |
| dc.relation.referencesen | Richmond, R., & Head, P. R. (1988, June). Alternative materials in long-span bridge structures. In Proceedings of the 1st Oleg Kerensky Memorial Conference on Tension Structures, London. https://www.istructe.org/journal/volumes/volume-66-(published-in-1988)/issue-12/1st-international-oleg-kerensky-memorial-conferenc/ | |
| dc.relation.referencesen | Hay, J. (1992). Response of bridges to wind. Her majesty's stationery office, London, UK. 179 p. https://trid.trb.org/View/376925 | |
| dc.relation.referencesen | Buyle-Bodin, F., Benhouna, M., & Convain, M. (1995, August). 28 Flexural behaviour of JITEC-FRP reinforced beams. In Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium (Vol. 29, p. 235). CRC Press. https://books.google.com/books?hl=uk&lr=&id=8Xe-n2zA_nMC&oi=fnd&pg=PA235... | |
| dc.relation.referencesen | Hall, J. E., & Mottram, J. T. (1998). Combined FRP reinforcement and permanent formwork for concrete members. Journal of Composites for Construction, 2(2), 78-86. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(78) | |
| dc.relation.referencesen | O'Regan, D. P., Clarke, J. L., & Dill, M. J. (1996). Site testing and monitoring of Fidgett Footbridge. Construction repair, 10(5), p. 29-31. https://trid.trb.org/View/469595 | |
| dc.relation.referencesen | Nanni, A. (2000, March). FRP reinforcement for bridge structures. In Proceedings of Structural Engineering Conference. The University of Kansas, Lawrence, KS (p. 5). https://quakewrap.com/frp%20papers/FRP-Reinforcement-for-Bridge-Structur... | |
| dc.relation.referencesen | Yan, X., Myers, J. J., & Nanni, A. (2000). An assessment of flexural behavior of CFRP prestressed beams subjected to incremental static loading. In ASCE Structures Congress. https://works.bepress.com/john-myers/cv/download/ | |
| dc.relation.referencesen | Tahsiri, H., & Belarbi, A. (2022). Evaluation of prestress relaxation loss and harping characteristics of prestressing CFRP systems. Construction and Building Materials, 331, 127339. | |
| dc.relation.referencesen | Jokūbaitis, A., & Valivonis, J. (2022). An analysis of the transfer lengths of different types of prestressed fiber-reinforced polymer reinforcement. Polymers, 14(19), 3931. https://doi.org/10.3390/polym14193931 | |
| dc.relation.referencesen | Wight, R. G., Green, M. F., & Erki, M. A. (2001). Prestressed FRP sheets for poststrengthening reinforced concrete beams. Journal of composites for construction, 5(4), 214-220. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(214) | |
| dc.relation.referencesen | Yu, P., Silva, P. F., & Nanni, A. (2003). Flexural performance of RC beams strengthened with prestressed CFRP sheets. Center for Infrastructure and Engineering Studies Department of Civil, Architectural, and Environmental Engineering University of Missouri-Rolla Rolla, MO, 65409-0030. https://www.researchgate.net/profile/Antonio-Nanni-3/publication/2374451... | |
| dc.relation.referencesen | Wang, H. T., Liu, S. S., Zhu, C. Y., Xiong, H., & Xu, G. W. (2022). Experimental study on the flexural behavior of large-scale reinforced concrete beams strengthened with prestressed CFRP plates. Journal of Composites for Construction, 26(6), 04022076. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001267 | |
| dc.relation.referencesen | Piyong, Y., Silva, P. F., & Nanni, A. (2003, September). Flexural strengthening of concrete slabs by a three-stage prestressing FRP system enhanced with the presence of GFRP anchor spikes. In Proceedings of the International Conference Composites in Construction (CCC2003) (Vol. 239244). University of Calabria Rende, Italy. https://quakewrap.com/frp%20papers/FlexuralStrengtheningofConcreteSlabby... | |
| dc.relation.referencesen | C. P., & Gergely, J. (2008). Seismic retrofit of reinforced concrete beam-column T-joints in bridge piers with FRP composite jackets. Seismic Strengthening of Concrete Buildings Using FRP Composites, 258, 7. https://books.google.com/books?hl=uk&lr=&id=gI72a6OHeQIC&oi=fnd&pg=PA7&d... | |
| dc.relation.referencesen | Triantafillou, T. C. (2001). Seismic retrofitting of structures with fibre‐reinforced polymers. Progress in Structural Engineering and Materials, 3(1), 57-65. https://doi.org/10.1002/pse.61 | |
| dc.relation.uri | https://doi.org/10.1007/978-981-13-6068-8_1 | |
| dc.relation.uri | https://doi.org/10.1016/B978-0-08-103013-4.00011-X | |
| dc.relation.uri | https://doi.org/10.3390/buildings13102406 | |
| dc.relation.uri | https://doi.org/10.1177/1687814020965438 | |
| dc.relation.uri | https://doi.org/10.1016/j.jobe.2021.102657 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2021.03.304 | |
| dc.relation.uri | https://doi.org/10.1016/j.jksues.2020.07.007 | |
| dc.relation.uri | https://doi.org/10.1016/j.envres.2023.115429 | |
| dc.relation.uri | https://doi.org/10.1016/j.compstruct.2021.113640 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2020.12.680 | |
| dc.relation.uri | https://doi.org/10.3390/jcs5120319 | |
| dc.relation.uri | https://doi.org/10.2749/101686699780481682 | |
| dc.relation.uri | https://doi.org/10.1243/PIME_PROC_1987_201_048_02 | |
| dc.relation.uri | https://www.istructe.org/journal/volumes/volume-66-(published-in-1988)/issue-12/1st-international-oleg-kerensky-memorial-conferenc/ | |
| dc.relation.uri | https://trid.trb.org/View/376925 | |
| dc.relation.uri | https://books.google.com/books?hl=uk&lr=&id=8Xe-n2zA_nMC&oi=fnd&pg=PA235.. | |
| dc.relation.uri | https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(78 | |
| dc.relation.uri | https://trid.trb.org/View/469595 | |
| dc.relation.uri | https://quakewrap.com/frp%20papers/FRP-Reinforcement-for-Bridge-Structur.. | |
| dc.relation.uri | https://works.bepress.com/john-myers/cv/download/ | |
| dc.relation.uri | https://doi.org/10.3390/polym14193931 | |
| dc.relation.uri | https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(214 | |
| dc.relation.uri | https://www.researchgate.net/profile/Antonio-Nanni-3/publication/2374451.. | |
| dc.relation.uri | https://doi.org/10.1061/(ASCE)CC.1943-5614.0001267 | |
| dc.relation.uri | https://quakewrap.com/frp%20papers/FlexuralStrengtheningofConcreteSlabby.. | |
| dc.relation.uri | https://books.google.com/books?hl=uk&lr=&id=gI72a6OHeQIC&oi=fnd&pg=PA7&d.. | |
| dc.relation.uri | https://doi.org/10.1002/pse.61 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Lytvynenko I., Blikharskyy Y., 2024 | |
| dc.subject | згинальний момент | |
| dc.subject | поперечна сила | |
| dc.subject | композитні матеріали | |
| dc.subject | підсилення | |
| dc.subject | залізобетонні конструкції | |
| dc.subject | полімери | |
| dc.subject | bending moment | |
| dc.subject | transverse force | |
| dc.subject | composite materials | |
| dc.subject | reinforcement | |
| dc.subject | reinforced concrete structures | |
| dc.subject | polymers | |
| dc.title | Composite materials for strengthening of reinforced concrete structures – a review | |
| dc.title.alternative | Композитні матеріали для підсилення залізобетонних конструкцій - огляд | |
| dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1