Use of Modified Adsorbents to Remove Pesticides From Wastewater
dc.citation.epage | 108 | |
dc.citation.issue | 2 | |
dc.citation.spage | 103 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Academy of Jan Dlugosz in Czestochów | |
dc.contributor.author | Sabadash, Vira | |
dc.contributor.author | Gumnitsky, Jaroslaw | |
dc.contributor.author | Nowik-Zając, Anna | |
dc.contributor.author | Zawierucha, Iwona | |
dc.contributor.author | Krylova, Galyna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-05-04T08:58:21Z | |
dc.date.available | 2023-05-04T08:58:21Z | |
dc.date.created | 2022-03-01 | |
dc.date.issued | 2022-03-01 | |
dc.description.abstract | The migration of highly concentrated pesticide solutions in the soil has been experimentally studied. A mathematical model of the diffusion process in the soil environment has been developed. Based on the mathematical model, a system of equations for calculating the duration and intensity of the process depending on environmental parameters was obtained. The dependence of the process velocity on the direction of the diffusion front is determined, and the diffusion coefficients, kinetic coefficients of the diffusion process and the diffusion front velocity were calculated. Environmental aspects of pesticide migration were analysed. The diffusion coefficient of glyphosate in the model soil environment is established. Under the experimental conditions, the diffusion coefficient value was D = 1.755×10-12 m2/s. The study results of the process of migration of the component up the soil profile indicate the mechanism of molecular diffusion of glyphosate in the soil environment. The results of experimental research and the solution of the mathematical model were used to model the migration process in the Comsol Multiphysics environment. Analysis of theoretical and experimental results showed that the developed model could be used to calculate the dynamics of the spread of the pesticide front in the soil with sufficient accuracy. | |
dc.format.extent | 103-108 | |
dc.format.pages | 6 | |
dc.identifier.citation | Use of Modified Adsorbents to Remove Pesticides From Wastewater / Vira Sabadash, Jaroslaw Gumnitsky, Anna Nowik-Zając, Iwona Zawierucha, Galyna Krylova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 2. — P. 103–108. | |
dc.identifier.citationen | Use of Modified Adsorbents to Remove Pesticides From Wastewater / Vira Sabadash, Jaroslaw Gumnitsky, Anna Nowik-Zając, Iwona Zawierucha, Galyna Krylova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 2. — P. 103–108. | |
dc.identifier.doi | doi.org/10.23939/ep2022.02.103 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59029 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Environmental Problems, 2 (7), 2022 | |
dc.relation.references | Ajiboye, T.O.,Oladoye, P.O.,Olanrewaju, C.A.,&Akinsola,G. O. | |
dc.relation.references | (2022). Organophosphorus Pesticides: Impacts, Detection | |
dc.relation.references | and Removal Strategies. Environmental Nanotechnology, | |
dc.relation.references | Monitoring & Management, 100655. doi: https://doi.org/10.1016/j.talanta.2021.123093 | |
dc.relation.references | Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., | |
dc.relation.references | Simal-Gándara, J., Mejuto, J. C., & García-Río, L. (2008). | |
dc.relation.references | The mobility and degradation of pesticides in soils and the | |
dc.relation.references | pollution of groundwater resources. Agriculture, ecosystems & | |
dc.relation.references | environment, 123(4), 247–260. doi: https://doi.org/10.1016/j.agee.2007.07.011 | |
dc.relation.references | Borgohain, X., Boruah, A., Sarma, G. K., & Rashid, M. H. | |
dc.relation.references | (2020). Rapid and highly high adsorption performance of | |
dc.relation.references | porous MgO nanostructures for fluoride removal from | |
dc.relation.references | water. Journal of Molecular Liquids, 305, 112799. doi: | |
dc.relation.references | https://doi.org/10.1016/j.molliq.2020.112799 | |
dc.relation.references | Hyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). | |
dc.relation.references | Statics and kinetics of albumin adsorption by natural zeolite. | |
dc.relation.references | Chemistry & Chemical Technology, 1(13), 95–100. doi: | |
dc.relation.references | https://doi.org/10.23939/chcht13.01.095 | |
dc.relation.references | Jiang, M., Chattopadhyay, A. N., Geng, Y., & Rotello, V. M. | |
dc.relation.references | (2022). An array-based nanosensor for detecting cellular | |
dc.relation.references | responses in macrophages induced by femtomolar levels of | |
dc.relation.references | pesticides. Chemical Communications, 58(17), 2890–2893. | |
dc.relation.references | doi: https://doi.org/10.1039/D1CC07100A | |
dc.relation.references | Kang, D., Yu, X., & Ge, M. (2017). Morphology-dependent | |
dc.relation.references | properties and adsorption performance of CeO2 for fluoride | |
dc.relation.references | removal. Chemical Engineering Journal, 330, 36–43. doi: | |
dc.relation.references | https://doi.org/10.1016/j.cej.2017.07.140 | |
dc.relation.references | Lopes-Ferreira, M., Maleski, A. L. A., Balan-Lima, L., | |
dc.relation.references | Bernardo, J. T. G., Hipolito, L. M., Seni-Silva, A. C., & | |
dc.relation.references | Lima, C. (2022). Impact of pesticides on human health in | |
dc.relation.references | the last six years in Brazil. International journal of | |
dc.relation.references | environmental research and public health, 19(6), 3198. doi: | |
dc.relation.references | https://doi.org/10.3390/ijerph19063198 | |
dc.relation.references | Rajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A | |
dc.relation.references | review of the occurrence of pesticides in the environment | |
dc.relation.references | and current technologies for their remediation and | |
dc.relation.references | management. Indian Journal of Microbiology, 60(2), 125-138. | |
dc.relation.references | doi: https://doi.org/10.1007/s12088-019-00841-x | |
dc.relation.references | Sabadash, V., Gumnytskyy, J., Mylianyk, O., & Romaniuk, L. | |
dc.relation.references | (2017). Concurrent sorption of copper and chromium | |
dc.relation.references | cations by natural zeolite. Environmental problems, 2(1), 33–36. | |
dc.relation.references | Retrieved from https://science.lpnu.ua/sites/default/files/journal-paper/2017/oct/6413/fulltext.pdf | |
dc.relation.references | Srivastav, A. L., Singh, P. K., Srivastava, V., & Sharma, Y. C. | |
dc.relation.references | (2013). Application of a new adsorbent for fluoride removal | |
dc.relation.references | from aqueous solutions. Journal of Hazardous materials, 263, 342–352. | |
dc.relation.references | doi: https://doi.org/10.1016/j.jhazmat.2013.04.017 | |
dc.relation.references | Wongmaneepratip, W., Gao, X., & Yang, H. (2022). Effect of | |
dc.relation.references | food processing on reduction and degradation pathway of | |
dc.relation.references | pyrethroid pesticides in mackerel fillet (Scomberomorus | |
dc.relation.references | commerson). Food Chemistry, 384, 132523. doi: | |
dc.relation.references | https://doi.org/10.1016/j.foodchem.2022.132523 | |
dc.relation.references | Yorlano,M. F., Demetrio, P.M.,& Rimoldi, F. (2022). Riparian | |
dc.relation.references | strips as attenuation zones for the toxicity of pesticides in | |
dc.relation.references | agricultural surface runoff: Relative influence of herbaceous | |
dc.relation.references | vegetation and terrain slope on toxicity attenuation of 2, 4-D. | |
dc.relation.references | Science of The Total Environment, 807, 150655. doi: https://doi.org/10.1016/j.scitotenv.2021.150655 | |
dc.relation.referencesen | Ajiboye, T.O.,Oladoye, P.O.,Olanrewaju, C.A.,&Akinsola,G. O. | |
dc.relation.referencesen | (2022). Organophosphorus Pesticides: Impacts, Detection | |
dc.relation.referencesen | and Removal Strategies. Environmental Nanotechnology, | |
dc.relation.referencesen | Monitoring & Management, 100655. doi: https://doi.org/10.1016/j.talanta.2021.123093 | |
dc.relation.referencesen | Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., | |
dc.relation.referencesen | Simal-Gándara, J., Mejuto, J. C., & García-Río, L. (2008). | |
dc.relation.referencesen | The mobility and degradation of pesticides in soils and the | |
dc.relation.referencesen | pollution of groundwater resources. Agriculture, ecosystems & | |
dc.relation.referencesen | environment, 123(4), 247–260. doi: https://doi.org/10.1016/j.agee.2007.07.011 | |
dc.relation.referencesen | Borgohain, X., Boruah, A., Sarma, G. K., & Rashid, M. H. | |
dc.relation.referencesen | (2020). Rapid and highly high adsorption performance of | |
dc.relation.referencesen | porous MgO nanostructures for fluoride removal from | |
dc.relation.referencesen | water. Journal of Molecular Liquids, 305, 112799. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/j.molliq.2020.112799 | |
dc.relation.referencesen | Hyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). | |
dc.relation.referencesen | Statics and kinetics of albumin adsorption by natural zeolite. | |
dc.relation.referencesen | Chemistry & Chemical Technology, 1(13), 95–100. doi: | |
dc.relation.referencesen | https://doi.org/10.23939/chcht13.01.095 | |
dc.relation.referencesen | Jiang, M., Chattopadhyay, A. N., Geng, Y., & Rotello, V. M. | |
dc.relation.referencesen | (2022). An array-based nanosensor for detecting cellular | |
dc.relation.referencesen | responses in macrophages induced by femtomolar levels of | |
dc.relation.referencesen | pesticides. Chemical Communications, 58(17), 2890–2893. | |
dc.relation.referencesen | doi: https://doi.org/10.1039/D1CC07100A | |
dc.relation.referencesen | Kang, D., Yu, X., & Ge, M. (2017). Morphology-dependent | |
dc.relation.referencesen | properties and adsorption performance of CeO2 for fluoride | |
dc.relation.referencesen | removal. Chemical Engineering Journal, 330, 36–43. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/j.cej.2017.07.140 | |
dc.relation.referencesen | Lopes-Ferreira, M., Maleski, A. L. A., Balan-Lima, L., | |
dc.relation.referencesen | Bernardo, J. T. G., Hipolito, L. M., Seni-Silva, A. C., & | |
dc.relation.referencesen | Lima, C. (2022). Impact of pesticides on human health in | |
dc.relation.referencesen | the last six years in Brazil. International journal of | |
dc.relation.referencesen | environmental research and public health, 19(6), 3198. doi: | |
dc.relation.referencesen | https://doi.org/10.3390/ijerph19063198 | |
dc.relation.referencesen | Rajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A | |
dc.relation.referencesen | review of the occurrence of pesticides in the environment | |
dc.relation.referencesen | and current technologies for their remediation and | |
dc.relation.referencesen | management. Indian Journal of Microbiology, 60(2), 125-138. | |
dc.relation.referencesen | doi: https://doi.org/10.1007/s12088-019-00841-x | |
dc.relation.referencesen | Sabadash, V., Gumnytskyy, J., Mylianyk, O., & Romaniuk, L. | |
dc.relation.referencesen | (2017). Concurrent sorption of copper and chromium | |
dc.relation.referencesen | cations by natural zeolite. Environmental problems, 2(1), 33–36. | |
dc.relation.referencesen | Retrieved from https://science.lpnu.ua/sites/default/files/journal-paper/2017/oct/6413/fulltext.pdf | |
dc.relation.referencesen | Srivastav, A. L., Singh, P. K., Srivastava, V., & Sharma, Y. C. | |
dc.relation.referencesen | (2013). Application of a new adsorbent for fluoride removal | |
dc.relation.referencesen | from aqueous solutions. Journal of Hazardous materials, 263, 342–352. | |
dc.relation.referencesen | doi: https://doi.org/10.1016/j.jhazmat.2013.04.017 | |
dc.relation.referencesen | Wongmaneepratip, W., Gao, X., & Yang, H. (2022). Effect of | |
dc.relation.referencesen | food processing on reduction and degradation pathway of | |
dc.relation.referencesen | pyrethroid pesticides in mackerel fillet (Scomberomorus | |
dc.relation.referencesen | commerson). Food Chemistry, 384, 132523. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/j.foodchem.2022.132523 | |
dc.relation.referencesen | Yorlano,M. F., Demetrio, P.M.,& Rimoldi, F. (2022). Riparian | |
dc.relation.referencesen | strips as attenuation zones for the toxicity of pesticides in | |
dc.relation.referencesen | agricultural surface runoff: Relative influence of herbaceous | |
dc.relation.referencesen | vegetation and terrain slope on toxicity attenuation of 2, 4-D. | |
dc.relation.referencesen | Science of The Total Environment, 807, 150655. doi: https://doi.org/10.1016/j.scitotenv.2021.150655 | |
dc.relation.uri | https://doi.org/10.1016/j.talanta.2021.123093 | |
dc.relation.uri | https://doi.org/10.1016/j.agee.2007.07.011 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2020.112799 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.01.095 | |
dc.relation.uri | https://doi.org/10.1039/D1CC07100A | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2017.07.140 | |
dc.relation.uri | https://doi.org/10.3390/ijerph19063198 | |
dc.relation.uri | https://doi.org/10.1007/s12088-019-00841-x | |
dc.relation.uri | https://science.lpnu.ua/sites/default/files/journal-paper/2017/oct/6413/fulltext.pdf | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2013.04.017 | |
dc.relation.uri | https://doi.org/10.1016/j.foodchem.2022.132523 | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2021.150655 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Sabadash V., Gumnitsky J., Nowik-Zając A., Zawierucha I., Krylova G., 2022 | |
dc.subject | diffusion | |
dc.subject | pesticides | |
dc.subject | soil | |
dc.subject | groundwaters | |
dc.subject | environmental protection | |
dc.title | Use of Modified Adsorbents to Remove Pesticides From Wastewater | |
dc.type | Article |
Files
License bundle
1 - 1 of 1