Use of Modified Adsorbents to Remove Pesticides From Wastewater

dc.citation.epage108
dc.citation.issue2
dc.citation.spage103
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationAcademy of Jan Dlugosz in Czestochów
dc.contributor.authorSabadash, Vira
dc.contributor.authorGumnitsky, Jaroslaw
dc.contributor.authorNowik-Zając, Anna
dc.contributor.authorZawierucha, Iwona
dc.contributor.authorKrylova, Galyna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-04T08:58:21Z
dc.date.available2023-05-04T08:58:21Z
dc.date.created2022-03-01
dc.date.issued2022-03-01
dc.description.abstractThe migration of highly concentrated pesticide solutions in the soil has been experimentally studied. A mathematical model of the diffusion process in the soil environment has been developed. Based on the mathematical model, a system of equations for calculating the duration and intensity of the process depending on environmental parameters was obtained. The dependence of the process velocity on the direction of the diffusion front is determined, and the diffusion coefficients, kinetic coefficients of the diffusion process and the diffusion front velocity were calculated. Environmental aspects of pesticide migration were analysed. The diffusion coefficient of glyphosate in the model soil environment is established. Under the experimental conditions, the diffusion coefficient value was D = 1.755×10-12 m2/s. The study results of the process of migration of the component up the soil profile indicate the mechanism of molecular diffusion of glyphosate in the soil environment. The results of experimental research and the solution of the mathematical model were used to model the migration process in the Comsol Multiphysics environment. Analysis of theoretical and experimental results showed that the developed model could be used to calculate the dynamics of the spread of the pesticide front in the soil with sufficient accuracy.
dc.format.extent103-108
dc.format.pages6
dc.identifier.citationUse of Modified Adsorbents to Remove Pesticides From Wastewater / Vira Sabadash, Jaroslaw Gumnitsky, Anna Nowik-Zając, Iwona Zawierucha, Galyna Krylova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 2. — P. 103–108.
dc.identifier.citationenUse of Modified Adsorbents to Remove Pesticides From Wastewater / Vira Sabadash, Jaroslaw Gumnitsky, Anna Nowik-Zając, Iwona Zawierucha, Galyna Krylova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 2. — P. 103–108.
dc.identifier.doidoi.org/10.23939/ep2022.02.103
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59029
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 2 (7), 2022
dc.relation.referencesAjiboye, T.O.,Oladoye, P.O.,Olanrewaju, C.A.,&Akinsola,G. O.
dc.relation.references(2022). Organophosphorus Pesticides: Impacts, Detection
dc.relation.referencesand Removal Strategies. Environmental Nanotechnology,
dc.relation.referencesMonitoring & Management, 100655. doi: https://doi.org/10.1016/j.talanta.2021.123093
dc.relation.referencesArias-Estévez, M., López-Periago, E., Martínez-Carballo, E.,
dc.relation.referencesSimal-Gándara, J., Mejuto, J. C., & García-Río, L. (2008).
dc.relation.referencesThe mobility and degradation of pesticides in soils and the
dc.relation.referencespollution of groundwater resources. Agriculture, ecosystems &
dc.relation.referencesenvironment, 123(4), 247–260. doi: https://doi.org/10.1016/j.agee.2007.07.011
dc.relation.referencesBorgohain, X., Boruah, A., Sarma, G. K., & Rashid, M. H.
dc.relation.references(2020). Rapid and highly high adsorption performance of
dc.relation.referencesporous MgO nanostructures for fluoride removal from
dc.relation.referenceswater. Journal of Molecular Liquids, 305, 112799. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.molliq.2020.112799
dc.relation.referencesHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019).
dc.relation.referencesStatics and kinetics of albumin adsorption by natural zeolite.
dc.relation.referencesChemistry & Chemical Technology, 1(13), 95–100. doi:
dc.relation.referenceshttps://doi.org/10.23939/chcht13.01.095
dc.relation.referencesJiang, M., Chattopadhyay, A. N., Geng, Y., & Rotello, V. M.
dc.relation.references(2022). An array-based nanosensor for detecting cellular
dc.relation.referencesresponses in macrophages induced by femtomolar levels of
dc.relation.referencespesticides. Chemical Communications, 58(17), 2890–2893.
dc.relation.referencesdoi: https://doi.org/10.1039/D1CC07100A
dc.relation.referencesKang, D., Yu, X., & Ge, M. (2017). Morphology-dependent
dc.relation.referencesproperties and adsorption performance of CeO2 for fluoride
dc.relation.referencesremoval. Chemical Engineering Journal, 330, 36–43. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.cej.2017.07.140
dc.relation.referencesLopes-Ferreira, M., Maleski, A. L. A., Balan-Lima, L.,
dc.relation.referencesBernardo, J. T. G., Hipolito, L. M., Seni-Silva, A. C., &
dc.relation.referencesLima, C. (2022). Impact of pesticides on human health in
dc.relation.referencesthe last six years in Brazil. International journal of
dc.relation.referencesenvironmental research and public health, 19(6), 3198. doi:
dc.relation.referenceshttps://doi.org/10.3390/ijerph19063198
dc.relation.referencesRajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A
dc.relation.referencesreview of the occurrence of pesticides in the environment
dc.relation.referencesand current technologies for their remediation and
dc.relation.referencesmanagement. Indian Journal of Microbiology, 60(2), 125-138.
dc.relation.referencesdoi: https://doi.org/10.1007/s12088-019-00841-x
dc.relation.referencesSabadash, V., Gumnytskyy, J., Mylianyk, O., & Romaniuk, L.
dc.relation.references(2017). Concurrent sorption of copper and chromium
dc.relation.referencescations by natural zeolite. Environmental problems, 2(1), 33–36.
dc.relation.referencesRetrieved from https://science.lpnu.ua/sites/default/files/journal-paper/2017/oct/6413/fulltext.pdf
dc.relation.referencesSrivastav, A. L., Singh, P. K., Srivastava, V., & Sharma, Y. C.
dc.relation.references(2013). Application of a new adsorbent for fluoride removal
dc.relation.referencesfrom aqueous solutions. Journal of Hazardous materials, 263, 342–352.
dc.relation.referencesdoi: https://doi.org/10.1016/j.jhazmat.2013.04.017
dc.relation.referencesWongmaneepratip, W., Gao, X., & Yang, H. (2022). Effect of
dc.relation.referencesfood processing on reduction and degradation pathway of
dc.relation.referencespyrethroid pesticides in mackerel fillet (Scomberomorus
dc.relation.referencescommerson). Food Chemistry, 384, 132523. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.foodchem.2022.132523
dc.relation.referencesYorlano,M. F., Demetrio, P.M.,& Rimoldi, F. (2022). Riparian
dc.relation.referencesstrips as attenuation zones for the toxicity of pesticides in
dc.relation.referencesagricultural surface runoff: Relative influence of herbaceous
dc.relation.referencesvegetation and terrain slope on toxicity attenuation of 2, 4-D.
dc.relation.referencesScience of The Total Environment, 807, 150655. doi: https://doi.org/10.1016/j.scitotenv.2021.150655
dc.relation.referencesenAjiboye, T.O.,Oladoye, P.O.,Olanrewaju, C.A.,&Akinsola,G. O.
dc.relation.referencesen(2022). Organophosphorus Pesticides: Impacts, Detection
dc.relation.referencesenand Removal Strategies. Environmental Nanotechnology,
dc.relation.referencesenMonitoring & Management, 100655. doi: https://doi.org/10.1016/j.talanta.2021.123093
dc.relation.referencesenArias-Estévez, M., López-Periago, E., Martínez-Carballo, E.,
dc.relation.referencesenSimal-Gándara, J., Mejuto, J. C., & García-Río, L. (2008).
dc.relation.referencesenThe mobility and degradation of pesticides in soils and the
dc.relation.referencesenpollution of groundwater resources. Agriculture, ecosystems &
dc.relation.referencesenenvironment, 123(4), 247–260. doi: https://doi.org/10.1016/j.agee.2007.07.011
dc.relation.referencesenBorgohain, X., Boruah, A., Sarma, G. K., & Rashid, M. H.
dc.relation.referencesen(2020). Rapid and highly high adsorption performance of
dc.relation.referencesenporous MgO nanostructures for fluoride removal from
dc.relation.referencesenwater. Journal of Molecular Liquids, 305, 112799. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.molliq.2020.112799
dc.relation.referencesenHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019).
dc.relation.referencesenStatics and kinetics of albumin adsorption by natural zeolite.
dc.relation.referencesenChemistry & Chemical Technology, 1(13), 95–100. doi:
dc.relation.referencesenhttps://doi.org/10.23939/chcht13.01.095
dc.relation.referencesenJiang, M., Chattopadhyay, A. N., Geng, Y., & Rotello, V. M.
dc.relation.referencesen(2022). An array-based nanosensor for detecting cellular
dc.relation.referencesenresponses in macrophages induced by femtomolar levels of
dc.relation.referencesenpesticides. Chemical Communications, 58(17), 2890–2893.
dc.relation.referencesendoi: https://doi.org/10.1039/D1CC07100A
dc.relation.referencesenKang, D., Yu, X., & Ge, M. (2017). Morphology-dependent
dc.relation.referencesenproperties and adsorption performance of CeO2 for fluoride
dc.relation.referencesenremoval. Chemical Engineering Journal, 330, 36–43. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.cej.2017.07.140
dc.relation.referencesenLopes-Ferreira, M., Maleski, A. L. A., Balan-Lima, L.,
dc.relation.referencesenBernardo, J. T. G., Hipolito, L. M., Seni-Silva, A. C., &
dc.relation.referencesenLima, C. (2022). Impact of pesticides on human health in
dc.relation.referencesenthe last six years in Brazil. International journal of
dc.relation.referencesenenvironmental research and public health, 19(6), 3198. doi:
dc.relation.referencesenhttps://doi.org/10.3390/ijerph19063198
dc.relation.referencesenRajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A
dc.relation.referencesenreview of the occurrence of pesticides in the environment
dc.relation.referencesenand current technologies for their remediation and
dc.relation.referencesenmanagement. Indian Journal of Microbiology, 60(2), 125-138.
dc.relation.referencesendoi: https://doi.org/10.1007/s12088-019-00841-x
dc.relation.referencesenSabadash, V., Gumnytskyy, J., Mylianyk, O., & Romaniuk, L.
dc.relation.referencesen(2017). Concurrent sorption of copper and chromium
dc.relation.referencesencations by natural zeolite. Environmental problems, 2(1), 33–36.
dc.relation.referencesenRetrieved from https://science.lpnu.ua/sites/default/files/journal-paper/2017/oct/6413/fulltext.pdf
dc.relation.referencesenSrivastav, A. L., Singh, P. K., Srivastava, V., & Sharma, Y. C.
dc.relation.referencesen(2013). Application of a new adsorbent for fluoride removal
dc.relation.referencesenfrom aqueous solutions. Journal of Hazardous materials, 263, 342–352.
dc.relation.referencesendoi: https://doi.org/10.1016/j.jhazmat.2013.04.017
dc.relation.referencesenWongmaneepratip, W., Gao, X., & Yang, H. (2022). Effect of
dc.relation.referencesenfood processing on reduction and degradation pathway of
dc.relation.referencesenpyrethroid pesticides in mackerel fillet (Scomberomorus
dc.relation.referencesencommerson). Food Chemistry, 384, 132523. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.foodchem.2022.132523
dc.relation.referencesenYorlano,M. F., Demetrio, P.M.,& Rimoldi, F. (2022). Riparian
dc.relation.referencesenstrips as attenuation zones for the toxicity of pesticides in
dc.relation.referencesenagricultural surface runoff: Relative influence of herbaceous
dc.relation.referencesenvegetation and terrain slope on toxicity attenuation of 2, 4-D.
dc.relation.referencesenScience of The Total Environment, 807, 150655. doi: https://doi.org/10.1016/j.scitotenv.2021.150655
dc.relation.urihttps://doi.org/10.1016/j.talanta.2021.123093
dc.relation.urihttps://doi.org/10.1016/j.agee.2007.07.011
dc.relation.urihttps://doi.org/10.1016/j.molliq.2020.112799
dc.relation.urihttps://doi.org/10.23939/chcht13.01.095
dc.relation.urihttps://doi.org/10.1039/D1CC07100A
dc.relation.urihttps://doi.org/10.1016/j.cej.2017.07.140
dc.relation.urihttps://doi.org/10.3390/ijerph19063198
dc.relation.urihttps://doi.org/10.1007/s12088-019-00841-x
dc.relation.urihttps://science.lpnu.ua/sites/default/files/journal-paper/2017/oct/6413/fulltext.pdf
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2013.04.017
dc.relation.urihttps://doi.org/10.1016/j.foodchem.2022.132523
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2021.150655
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Sabadash V., Gumnitsky J., Nowik-Zając A., Zawierucha I., Krylova G., 2022
dc.subjectdiffusion
dc.subjectpesticides
dc.subjectsoil
dc.subjectgroundwaters
dc.subjectenvironmental protection
dc.titleUse of Modified Adsorbents to Remove Pesticides From Wastewater
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v7n2_Sabadash_V-Use_of_Modified_Adsorbents_103-108.pdf
Size:
385.31 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v7n2_Sabadash_V-Use_of_Modified_Adsorbents_103-108__COVER.png
Size:
1.11 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: