Assessment of radiation hazard of concrete and background radiation indoors

dc.citation.epage163
dc.citation.issue3
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage157
dc.citation.volume9
dc.contributor.affiliationKharkiv National Automobile and Highway University
dc.contributor.authorKhobotova, Elina
dc.contributor.authorHraivoronska, Inna
dc.contributor.authorIhnatenko, Maryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-05-13T09:48:14Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractSimulation of the dose rate of building materials γradiation in the premises of different designs has revealed the minimal levels of human exposure. It was determined that the exposure dose rate at the given points of a single room depends on the content of natural radionuclides in construction materials and the changing geometry of a person’s exposure in the premises. When the exposure dose rate of γ-radiation above an individual plate is determined, it is conventionally divided into the discrete sources, the dose rate from several plates is summed up. It is shown that near a vertical wall with a uniform content of natural radionuclides the exposure dose is higher where the wall is thicker. When radiation is emitted from the floor of a certain thickness, a maximum exposure dose rate occurs, which becomes greater when the layer of half attenuation of the material increases. The exposure dose rate also increases in the corners of the room: the higher the room the greater the dose rate. The results obtained predict the doses of human exposure at various points of the room, which determines the conditions for a person’s existence and the support staff work, the rational arrangement of workplaces and machinery, and the optimization of the operating modes of precision equipment.
dc.format.extent157-163
dc.format.pages7
dc.identifier.citationKhobotova E. Assessment of radiation hazard of concrete and background radiation indoors / Elina Khobotova, Inna Hraivoronska, Maryna Ihnatenko // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 3. — P. 157–163.
dc.identifier.citationenKhobotova E. Assessment of radiation hazard of concrete and background radiation indoors / Elina Khobotova, Inna Hraivoronska, Maryna Ihnatenko // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 3. — P. 157–163.
dc.identifier.doidoi.org/10.23939/ep2024.03.157
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64533
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 3 (9), 2024
dc.relation.ispartofEnvironmental Problems, 3 (9), 2024
dc.relation.referencesKovalenko, G. D., & Rudia, K. G. (2001). Radioecology of Ukraine: Monographs. Radioekologiya Ukrainy: Кiev, Publishing and Printing Center “Kiev University”.
dc.relation.referencesKovler, K., & Schroeyers, W. (2017). Natural radioactivity in construction. Journal of Environmental Radioactivity, 168, 1–3. doi: https://doi.org/10.1016/j.jenvrad.2017.01.007
dc.relation.referencesManić, V., Manić, G., Nikezic, D., & Krstic, D. (2012). Calculation of dose rate conversion factors for 238U, 232Th and 40K in concrete structures of various dimensions, with application to Niš, Serbia. Radiation Protection Dosimetry, 152(4), 361–368. doi: https://doi.org/10.1093/rpd/ncs058
dc.relation.referencesManić, V., Nikezic, D., Krstic, D., & Manić, G. (2014). Assessment of indoor absorbed gamma dose rate from natural radionuclides in concrete by the method of build-up factors. Radiation Protection Dosimetry, 162(4), 609–617. doi: https://doi.org/10.1093/rpd/nct358
dc.relation.referencesManić, G., Manić, V., Nikezić, D., & Krstić, D. (2015). The dose of gamma radiation from building materials and soil. Nukleonika, 60(4), 951–958, doi: https://doi.org/10.1515/nuka-2015-0148
dc.relation.referencesMonica, S., Visnu Prasad, A. K., Soniya, S. R., & Jojo, P. J. (2016). Estimation of indoor and outdoor effective doses and lifetime cancer risk from gamma dose rates along the coastal regions of Kollam district, Kerala. Radiation protection and environment, 39(1), 38–43. doi: http://dx.doi.org/10.4103/0972-0464.185180
dc.relation.referencesNuccetelli, C., Risica, S., D’Alessandro, M., & Trevisi, R. (2012). Natural radioactivity in building material in the European Union: robustness of the activity concentration index I and comparison with a room model. Journal of Radiological Protection, 32(3), 349–358. doi: https://doi.org/10.1088/0952-4746/32/3/349
dc.relation.referencesNuccetelli, C., Trevisi, R., Ignjatović, I., & Dragaš, J. (2017). Alkali-activated concrete with Serbian fly ash and its radiological impact. Journal of Environmental Radioactivity, 168, 30–37. doi: https://doi.org/10.1016/j.jenvrad.2016.09.002
dc.relation.referencesPečiuliene, M., Grigaliūnaite‐Vonsevičiene, G., & Girgždys, A. (2006). Evaluation of fluctuation of equivalent dose rate due to radionuclide radiation in buildings. Journal of Environmental Engineering and Landscape Management, 14(4), 207–213. doi: https://10.1080/16486897.2006.9636899
dc.relation.referencesRadiation Safety Standards of Ukraine (NRBU-97), State hygienic standards GGN 6.6.1.-6.5.001.98 (1998). The method of modeling the radiation background in the premises. Author’s license no 29923 UA (2009).
dc.relation.referencesenKovalenko, G. D., & Rudia, K. G. (2001). Radioecology of Ukraine: Monographs. Radioekologiya Ukrainy: Kiev, Publishing and Printing Center "Kiev University".
dc.relation.referencesenKovler, K., & Schroeyers, W. (2017). Natural radioactivity in construction. Journal of Environmental Radioactivity, 168, 1–3. doi: https://doi.org/10.1016/j.jenvrad.2017.01.007
dc.relation.referencesenManić, V., Manić, G., Nikezic, D., & Krstic, D. (2012). Calculation of dose rate conversion factors for 238U, 232Th and 40K in concrete structures of various dimensions, with application to Niš, Serbia. Radiation Protection Dosimetry, 152(4), 361–368. doi: https://doi.org/10.1093/rpd/ncs058
dc.relation.referencesenManić, V., Nikezic, D., Krstic, D., & Manić, G. (2014). Assessment of indoor absorbed gamma dose rate from natural radionuclides in concrete by the method of build-up factors. Radiation Protection Dosimetry, 162(4), 609–617. doi: https://doi.org/10.1093/rpd/nct358
dc.relation.referencesenManić, G., Manić, V., Nikezić, D., & Krstić, D. (2015). The dose of gamma radiation from building materials and soil. Nukleonika, 60(4), 951–958, doi: https://doi.org/10.1515/nuka-2015-0148
dc.relation.referencesenMonica, S., Visnu Prasad, A. K., Soniya, S. R., & Jojo, P. J. (2016). Estimation of indoor and outdoor effective doses and lifetime cancer risk from gamma dose rates along the coastal regions of Kollam district, Kerala. Radiation protection and environment, 39(1), 38–43. doi: http://dx.doi.org/10.4103/0972-0464.185180
dc.relation.referencesenNuccetelli, C., Risica, S., D’Alessandro, M., & Trevisi, R. (2012). Natural radioactivity in building material in the European Union: robustness of the activity concentration index I and comparison with a room model. Journal of Radiological Protection, 32(3), 349–358. doi: https://doi.org/10.1088/0952-4746/32/3/349
dc.relation.referencesenNuccetelli, C., Trevisi, R., Ignjatović, I., & Dragaš, J. (2017). Alkali-activated concrete with Serbian fly ash and its radiological impact. Journal of Environmental Radioactivity, 168, 30–37. doi: https://doi.org/10.1016/j.jenvrad.2016.09.002
dc.relation.referencesenPečiuliene, M., Grigaliūnaite‐Vonsevičiene, G., & Girgždys, A. (2006). Evaluation of fluctuation of equivalent dose rate due to radionuclide radiation in buildings. Journal of Environmental Engineering and Landscape Management, 14(4), 207–213. doi: https://10.1080/16486897.2006.9636899
dc.relation.referencesenRadiation Safety Standards of Ukraine (NRBU-97), State hygienic standards GGN 6.6.1.-6.5.001.98 (1998). The method of modeling the radiation background in the premises. Author’s license no 29923 UA (2009).
dc.relation.urihttps://doi.org/10.1016/j.jenvrad.2017.01.007
dc.relation.urihttps://doi.org/10.1093/rpd/ncs058
dc.relation.urihttps://doi.org/10.1093/rpd/nct358
dc.relation.urihttps://doi.org/10.1515/nuka-2015-0148
dc.relation.urihttp://dx.doi.org/10.4103/0972-0464.185180
dc.relation.urihttps://doi.org/10.1088/0952-4746/32/3/349
dc.relation.urihttps://doi.org/10.1016/j.jenvrad.2016.09.002
dc.relation.urihttps://10.1080/16486897.2006.9636899
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Khobotova E., Hraivoronska I., Ihnatenko M., 2024
dc.subjectnatural radionuclides
dc.subjectconstruction materials
dc.subjectγradiation indoor
dc.subjectexposure dose rate
dc.subjectimulation
dc.titleAssessment of radiation hazard of concrete and background radiation indoors
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n3_Khobotova_E-Assessment_of_radiation_157-163.pdf
Size:
855.8 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n3_Khobotova_E-Assessment_of_radiation_157-163__COVER.png
Size:
1.04 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: