Assessment of radiation hazard of concrete and background radiation indoors
dc.citation.epage | 163 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Екологічні проблеми | |
dc.citation.spage | 157 | |
dc.citation.volume | 9 | |
dc.contributor.affiliation | Kharkiv National Automobile and Highway University | |
dc.contributor.author | Khobotova, Elina | |
dc.contributor.author | Hraivoronska, Inna | |
dc.contributor.author | Ihnatenko, Maryna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-05-13T09:48:14Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | Simulation of the dose rate of building materials γradiation in the premises of different designs has revealed the minimal levels of human exposure. It was determined that the exposure dose rate at the given points of a single room depends on the content of natural radionuclides in construction materials and the changing geometry of a person’s exposure in the premises. When the exposure dose rate of γ-radiation above an individual plate is determined, it is conventionally divided into the discrete sources, the dose rate from several plates is summed up. It is shown that near a vertical wall with a uniform content of natural radionuclides the exposure dose is higher where the wall is thicker. When radiation is emitted from the floor of a certain thickness, a maximum exposure dose rate occurs, which becomes greater when the layer of half attenuation of the material increases. The exposure dose rate also increases in the corners of the room: the higher the room the greater the dose rate. The results obtained predict the doses of human exposure at various points of the room, which determines the conditions for a person’s existence and the support staff work, the rational arrangement of workplaces and machinery, and the optimization of the operating modes of precision equipment. | |
dc.format.extent | 157-163 | |
dc.format.pages | 7 | |
dc.identifier.citation | Khobotova E. Assessment of radiation hazard of concrete and background radiation indoors / Elina Khobotova, Inna Hraivoronska, Maryna Ihnatenko // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 3. — P. 157–163. | |
dc.identifier.citationen | Khobotova E. Assessment of radiation hazard of concrete and background radiation indoors / Elina Khobotova, Inna Hraivoronska, Maryna Ihnatenko // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 3. — P. 157–163. | |
dc.identifier.doi | doi.org/10.23939/ep2024.03.157 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64533 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Екологічні проблеми, 3 (9), 2024 | |
dc.relation.ispartof | Environmental Problems, 3 (9), 2024 | |
dc.relation.references | Kovalenko, G. D., & Rudia, K. G. (2001). Radioecology of Ukraine: Monographs. Radioekologiya Ukrainy: Кiev, Publishing and Printing Center “Kiev University”. | |
dc.relation.references | Kovler, K., & Schroeyers, W. (2017). Natural radioactivity in construction. Journal of Environmental Radioactivity, 168, 1–3. doi: https://doi.org/10.1016/j.jenvrad.2017.01.007 | |
dc.relation.references | Manić, V., Manić, G., Nikezic, D., & Krstic, D. (2012). Calculation of dose rate conversion factors for 238U, 232Th and 40K in concrete structures of various dimensions, with application to Niš, Serbia. Radiation Protection Dosimetry, 152(4), 361–368. doi: https://doi.org/10.1093/rpd/ncs058 | |
dc.relation.references | Manić, V., Nikezic, D., Krstic, D., & Manić, G. (2014). Assessment of indoor absorbed gamma dose rate from natural radionuclides in concrete by the method of build-up factors. Radiation Protection Dosimetry, 162(4), 609–617. doi: https://doi.org/10.1093/rpd/nct358 | |
dc.relation.references | Manić, G., Manić, V., Nikezić, D., & Krstić, D. (2015). The dose of gamma radiation from building materials and soil. Nukleonika, 60(4), 951–958, doi: https://doi.org/10.1515/nuka-2015-0148 | |
dc.relation.references | Monica, S., Visnu Prasad, A. K., Soniya, S. R., & Jojo, P. J. (2016). Estimation of indoor and outdoor effective doses and lifetime cancer risk from gamma dose rates along the coastal regions of Kollam district, Kerala. Radiation protection and environment, 39(1), 38–43. doi: http://dx.doi.org/10.4103/0972-0464.185180 | |
dc.relation.references | Nuccetelli, C., Risica, S., D’Alessandro, M., & Trevisi, R. (2012). Natural radioactivity in building material in the European Union: robustness of the activity concentration index I and comparison with a room model. Journal of Radiological Protection, 32(3), 349–358. doi: https://doi.org/10.1088/0952-4746/32/3/349 | |
dc.relation.references | Nuccetelli, C., Trevisi, R., Ignjatović, I., & Dragaš, J. (2017). Alkali-activated concrete with Serbian fly ash and its radiological impact. Journal of Environmental Radioactivity, 168, 30–37. doi: https://doi.org/10.1016/j.jenvrad.2016.09.002 | |
dc.relation.references | Pečiuliene, M., Grigaliūnaite‐Vonsevičiene, G., & Girgždys, A. (2006). Evaluation of fluctuation of equivalent dose rate due to radionuclide radiation in buildings. Journal of Environmental Engineering and Landscape Management, 14(4), 207–213. doi: https://10.1080/16486897.2006.9636899 | |
dc.relation.references | Radiation Safety Standards of Ukraine (NRBU-97), State hygienic standards GGN 6.6.1.-6.5.001.98 (1998). The method of modeling the radiation background in the premises. Author’s license no 29923 UA (2009). | |
dc.relation.referencesen | Kovalenko, G. D., & Rudia, K. G. (2001). Radioecology of Ukraine: Monographs. Radioekologiya Ukrainy: Kiev, Publishing and Printing Center "Kiev University". | |
dc.relation.referencesen | Kovler, K., & Schroeyers, W. (2017). Natural radioactivity in construction. Journal of Environmental Radioactivity, 168, 1–3. doi: https://doi.org/10.1016/j.jenvrad.2017.01.007 | |
dc.relation.referencesen | Manić, V., Manić, G., Nikezic, D., & Krstic, D. (2012). Calculation of dose rate conversion factors for 238U, 232Th and 40K in concrete structures of various dimensions, with application to Niš, Serbia. Radiation Protection Dosimetry, 152(4), 361–368. doi: https://doi.org/10.1093/rpd/ncs058 | |
dc.relation.referencesen | Manić, V., Nikezic, D., Krstic, D., & Manić, G. (2014). Assessment of indoor absorbed gamma dose rate from natural radionuclides in concrete by the method of build-up factors. Radiation Protection Dosimetry, 162(4), 609–617. doi: https://doi.org/10.1093/rpd/nct358 | |
dc.relation.referencesen | Manić, G., Manić, V., Nikezić, D., & Krstić, D. (2015). The dose of gamma radiation from building materials and soil. Nukleonika, 60(4), 951–958, doi: https://doi.org/10.1515/nuka-2015-0148 | |
dc.relation.referencesen | Monica, S., Visnu Prasad, A. K., Soniya, S. R., & Jojo, P. J. (2016). Estimation of indoor and outdoor effective doses and lifetime cancer risk from gamma dose rates along the coastal regions of Kollam district, Kerala. Radiation protection and environment, 39(1), 38–43. doi: http://dx.doi.org/10.4103/0972-0464.185180 | |
dc.relation.referencesen | Nuccetelli, C., Risica, S., D’Alessandro, M., & Trevisi, R. (2012). Natural radioactivity in building material in the European Union: robustness of the activity concentration index I and comparison with a room model. Journal of Radiological Protection, 32(3), 349–358. doi: https://doi.org/10.1088/0952-4746/32/3/349 | |
dc.relation.referencesen | Nuccetelli, C., Trevisi, R., Ignjatović, I., & Dragaš, J. (2017). Alkali-activated concrete with Serbian fly ash and its radiological impact. Journal of Environmental Radioactivity, 168, 30–37. doi: https://doi.org/10.1016/j.jenvrad.2016.09.002 | |
dc.relation.referencesen | Pečiuliene, M., Grigaliūnaite‐Vonsevičiene, G., & Girgždys, A. (2006). Evaluation of fluctuation of equivalent dose rate due to radionuclide radiation in buildings. Journal of Environmental Engineering and Landscape Management, 14(4), 207–213. doi: https://10.1080/16486897.2006.9636899 | |
dc.relation.referencesen | Radiation Safety Standards of Ukraine (NRBU-97), State hygienic standards GGN 6.6.1.-6.5.001.98 (1998). The method of modeling the radiation background in the premises. Author’s license no 29923 UA (2009). | |
dc.relation.uri | https://doi.org/10.1016/j.jenvrad.2017.01.007 | |
dc.relation.uri | https://doi.org/10.1093/rpd/ncs058 | |
dc.relation.uri | https://doi.org/10.1093/rpd/nct358 | |
dc.relation.uri | https://doi.org/10.1515/nuka-2015-0148 | |
dc.relation.uri | http://dx.doi.org/10.4103/0972-0464.185180 | |
dc.relation.uri | https://doi.org/10.1088/0952-4746/32/3/349 | |
dc.relation.uri | https://doi.org/10.1016/j.jenvrad.2016.09.002 | |
dc.relation.uri | https://10.1080/16486897.2006.9636899 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Khobotova E., Hraivoronska I., Ihnatenko M., 2024 | |
dc.subject | natural radionuclides | |
dc.subject | construction materials | |
dc.subject | γradiation indoor | |
dc.subject | exposure dose rate | |
dc.subject | imulation | |
dc.title | Assessment of radiation hazard of concrete and background radiation indoors | |
dc.type | Article |
Files
License bundle
1 - 1 of 1