Spatial-temporal geodynamics monitoring of land-use and land cover changes in Stebnyk, Ukraine based on Earth remote sensing data

dc.citation.epage15
dc.citation.issue1(32)
dc.citation.journalTitleГеодинаміка
dc.citation.spage5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГлотов, Володимир
dc.contributor.authorБяла, Мирослава
dc.contributor.authorHlotov, Volodymyr
dc.contributor.authorBiala, Myroslava
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T08:11:34Z
dc.date.available2023-07-03T08:11:34Z
dc.date.created2028-02-22
dc.date.issued2028-02-22
dc.description.abstractПодано результати аналізу та моніторингу змін складу категорій земель регіону міста Стебник (Львівська область, Україна) як об’єкта підвищеної техногенної небезпеки (на території спостерігаються карстові провали, що є наслідком порушення умов консервації підземних шахт видобутку калійної солі). Видобуток здійснювався без закладання відпрацьованих порожнин, унаслідок чого утворилися пустоти близько 33 млн м3, які пролягають під житловим сектором та дорожньою інфраструктурою, і потенційно можуть бути місцем наступного провалу, що загрожує населенню та ландшафтній екосистемі регіону загалом. Дослідження ґрунтувалось на супутникових знімках Landsat 7 та 8 станом на лютий 2002 р. та грудень 2019 р. відповідно, та даних ETM+. Для виявлення та аналізу просторово-часової динаміки змін типів земельного покриву використано методику контрольованої класифікації за методом максимальної вірогідності із поділом на чотири класи. Також апробовано застосування вегетаційного індексу NDVI та проведення на його основі класифікації. Для підвищення точності даних використана растрова фільтрація зображень. Для аналізу зміни складу категорій земель за досліджуваний період застосовано підхід порівняння після класифікації. Виявлено, що за 2002–2019 рр. забудована територія зросла на 5,61 %, площі лісів та полів зменшились на 2,77 % та 2,36 % відповідно. Площа водних об’єктів зазнала найменших змін (+0,37 %). Оцінка якості класифікацій продемонструвала, що класифікація, виконана на основі RGB знімків, точна порівняно з класифікацією на основі вегетаційного індексу NDVI, за більшістю класів фільтрована класифікація дала точніші результати. Моніторинг змін земної поверхні задля збалансованого локального, регіонального та національного розвитку і планування територій є новим напрямом застосування даних дистанційного зондування Землі (ДЗЗ) в Україні, що дає змогу оцінити наявний стан геокомпонентів системи та спрогнозувати їх подальші зміни. Вивчення антропогенної активності дає можливість передбачити небезпечні техногенні процеси і завдяки цьому уникнути чи зменшити їх наслідки. Результати дослідження можуть використовуватись як основа для подальшого моніторингу регіону, а також бути корисними для територіальних громад з метою гармонійного, сталого розвитку та управління земельними ресурсами досліджуваної ділянки.
dc.description.abstractThe article presents the analysis and monitoring of land-use/land cover (LULC) changes considering the case study of Stebnyk, Lviv region, Ukraine, as an area of increased anthropogenic hazard impact (characterized by the karst sinkholes creation which is the result of extracting the potassium salt from underground mines and the violation of their conservation). The extraction was carried out without backfilling the underground excavations, resulting in the void formation of about 33 million m3 lying under the residential sector and road infrastructure, and could potentially be the site of future landslides/sinkholes that threaten the inhabitants and landscape ecosystem of the region as a whole. The research is based on Landsat 7 and 8 satellite images (made in February 2002 and December 2019, respectively), and ETM+ (Enhanced Thematic Mapper) data. Supervised classification conducted by maximum likelihood method was used to identify and analyze the spatial and temporal LULC changes on the territory divided into four classes. Vegetation indices NDVI have been calculated, analyzed and featured for further supervised classification. The accuracy of the obtained data had been improved by raster image filtering. A post-classification comparison approach was used to analyze LULC changes over the research period. It was established that for the period 2002–2019 the built-up area has increased by 5.61 %, and the areas of forests and fields have decreased by 2.77 % and 2.36%, respectively. The area of water bodies has undergone the least changes (+0.37%). The accuracy estimation of carried out classifications showed that the classification based on RGB images is more accurate than the classification based on the NDVI; the filtered classification showed more accurate results for most classes, than the unfiltered one. LULC monitoring for balanced regional, local and national development, as well as territorial planning, is a new area of the application of the Earth remote sensing (ERS) data in Ukraine. It allows assessing the state of the geocomponents system and predicting their further changes. The study of anthropogenic activity makes it possible to predict dangerous technogenic processes and thus avoid or reduce their consequences. The results of the research can be used as a basis for further monitoring of the Stebnyk region. They will also be useful to territorial communities for harmonious, sustainable development and land management of the studied area.
dc.format.extent5-15
dc.format.pages11
dc.identifier.citationHlotov V. Spatial-temporal geodynamics monitoring of land-use and land cover changes in Stebnyk, Ukraine based on Earth remote sensing data / Volodymyr Hlotov, Myroslava Biala // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 5–15.
dc.identifier.citationenHlotov V. Spatial-temporal geodynamics monitoring of land-use and land cover changes in Stebnyk, Ukraine based on Earth remote sensing data / Volodymyr Hlotov, Myroslava Biala // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2022. — No 1(32). — P. 5–15.
dc.identifier.doidoi.org/10.23939/jgd2022.02.005
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59367
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1(32), 2022
dc.relation.ispartofGeodynamics, 1(32), 2022
dc.relation.referencesAyele, G. T., Tebeje, A. K., Demissie, S. S., Belete, M. A.,
dc.relation.referencesJemberrie, M. A., Teshome, W. M., ... & Teshale, E. Z.
dc.relation.references(2018). Time series land cover mapping and
dc.relation.referenceschange detection analysis using geographic information
dc.relation.referencessystem and remote sensing, Northern
dc.relation.referencesEthiopia. Air, Soil and Water Research, 11,
dc.relation.referenceshttps://doi.org/10.1177/1178622117751603
dc.relation.referencesBurshtinska, Kh., & Stankevich, A. (2010). Aerospace
dc.relation.referencesshooting systems. Lviv: Lviv Polytechnic National
dc.relation.referencesUniversity Publishing House. (in Ukrainian).
dc.relation.referencesChepurna, T. B., & Samborska, O. I. (2017). Neural
dc.relation.referencesnetwork modeling of subsidence dynamics on the
dc.relation.referencesterritory of Stebnyk mining and chemical
dc.relation.referencesenterprise «POLYMINERAL». The International
dc.relation.referencesResearch and Practice Conference «ECOGEOFORUM-2017. Actual Problems and Innovations».
dc.relation.references(in Ukrainian). http://elar.nung.edu.ua/bitstream/123456789/8891/1/8600p.pdf
dc.relation.referencesChiesura, A., & De Groot, R. (2003). Critical natural
dc.relation.referencescapital: a socio-cultural perspective. Ecological
dc.relation.referencesEconomics, 44(2-3), 219-231. https://doi.org/10.1016/S0921-8009(02)00275-6
dc.relation.referencesCoops N.C., Tooke T.R. Introduction to Remote
dc.relation.referencesSensing. Learning Landscape Ecology. Springer. 2017. https://doi.org/10.1007/978-1-4939-6374-4_1
dc.relation.referencesCracknell, A. P. (2018). The development of remote
dc.relation.referencessensing in the last 40 years. International Journal
dc.relation.referencesof Remote Sensing, 39(23), 8387–8427.
dc.relation.referenceshttps://doi.org/10.1080/01431161.2018.1550919
dc.relation.referencesDhingra, S., & Kumar, D. (2019). A review of
dc.relation.referencesremotely sensed satellite image classification.
dc.relation.referencesInternational Journal of Electrical & Computer
dc.relation.referencesEngineering (2088-8708), 9(3). https://doi.org/10.11591/ijece.v9i3.pp.1720–1731
dc.relation.referencesDyakiv V., Hevpa Z., & Kovalchuk M. (2019).
dc.relation.referencesGeoecological characteristics and hydrochemical
dc.relation.referencescomposition of water layers in karst lake, formed
dc.relation.referenceson the site failure number 27, over mine number 2
dc.relation.referencesStebnyk, plant «Polimineral». State Commission
dc.relation.referencesof Ukraine on Mineral Reserves, pp. 215–221. (in
dc.relation.referencesUkrainian).
dc.relation.referencesGaffney, O., & Steffen, W. (2017). The anthropocene
dc.relation.referencesequation. The Anthropocene Review, 4(1), 53–61.
dc.relation.referenceshttps://doi.org/10.1177/2053019616688022
dc.relation.referencesGergel, S. E., & Turner, M. G. (Eds.). (2017).
dc.relation.referencesLearning landscape ecology: a practical guide to
dc.relation.referencesconcepts and techniques. Springer. https://doi.org/10.1007/978-1-4939-6374-4
dc.relation.referencesGong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y.,
dc.relation.referencesLiang, L., ... & Chen, J. (2013). Finer resolution
dc.relation.referencesobservation and monitoring of global land cover:
dc.relation.referencesFirst mapping results with Landsat TM and ETM+
dc.relation.referencesdata. International Journal of Remote Sensing, 34(7), 2607–2654. https://doi.org/10.1080/01431161.2012.748992
dc.relation.referencesGotinyan V., Tomchenko O. (2009). Estimation of
dc.relation.referencestendencies of karst processes manifestation on
dc.relation.referencesremote sensing materials (on the example of
dc.relation.referencesStebnyk deposit of potassium salts). Bulletin of
dc.relation.referencesGeodesy and Cartography. (5), 24–27.
dc.relation.referencesHatfield, J., & Moran, S. (2014). Agriculture and
dc.relation.referencesRemote Sensing. Encyclopedia of Remote Sensing.
dc.relation.referenceshttps://doi.org/10.1007/978-0-387-36699-9_6
dc.relation.referencesHuan Y., Xiangmeng L., Bo K., Ruopu L., &
dc.relation.referencesGuangxing W. (2019). Landscape ecology development
dc.relation.referencessupported by geospatial technologies: A
dc.relation.referencesreview. Ecological Informatic, 51, 185–192.
dc.relation.referenceshttps://doi.org/10.1016/j.ecoinf.2019.03.006.
dc.relation.referencesKolios, S., & Stylios, C. D. (2013). Identification of
dc.relation.referencesland cover/land use changes in the greater area of
dc.relation.referencesthe Preveza peninsula in Greece using Landsat
dc.relation.referencessatellite data. Applied Geography, 40, 150–160.
dc.relation.referenceshttps://doi.org/10.1016/j.apgeog.2013.02.005
dc.relation.referencesKuzmenko, E. D., Maksymchuk, V. Y., Bagriy, S. M.,
dc.relation.referencesSapuzhak, O. Y., Chepurnyi, I. V., Deshchytsya, S. A.,
dc.relation.references& Dzoba, U. O. (2019). Integration of electric
dc.relation.referencesprospectingmethods for forecasting the subsidence
dc.relation.referencesand sinkholes within the salt deposits in the
dc.relation.referencesPrecarpathian area. Geodynamics, 2 (27), 54–65.
dc.relation.referencesLi, J., Yang, L., Pu, R., & Liu, Y. (2017). A review on
dc.relation.referencesanthropogenic geomorphology. Journal of Geographical
dc.relation.referencesSciences, 27(1), 109–128. https://doi.org/10.1007/s11442-017-1367-7
dc.relation.referencesLi-An, C., Billa, L., & Azari, M. (2018). Anthropocene
dc.relation.referencesclimate and landscape change that increases
dc.relation.referencesflood disasters. Int J Hydro, 2(4), 487–491.
dc.relation.referenceshttps://doi.org/10.15406/ijh.2018.02.00115
dc.relation.referencesNewton, A. C., Hill, R. A., Echeverría, C., Golicher, D.,
dc.relation.referencesRey Benayas, J. M., Cayuela, L., & Hinsley, S. A.
dc.relation.references(2009). Remote sensing and the future of
dc.relation.referenceslandscape ecology. Progress in Physical Geography, 33(4), 528–546. https://doi.org/10.1177/0309133309346882
dc.relation.referencesPelenc, J., & Ballet, J. (2015). Strong sustainability,
dc.relation.referencescritical natural capital and the capability
dc.relation.referencesapproach. Ecological economics, 112, 36–44.
dc.relation.referencesRiese, F. M., Keller, S., & Hinz, S. (2019). Supervised
dc.relation.referencesand semi-supervised self-organizing maps
dc.relation.referencesfor regression and classification focusing on
dc.relation.referenceshyperspectral data. Remote Sensing, 12(1), 7.
dc.relation.referenceshttps://doi.org/10.3390/rs12010007
dc.relation.referencesRudko, G., & Bondarenko, M. (2001). The
dc.relation.referencestechnogenic ecological safety of the salt and
dc.relation.referencessulphur minings of Lviv region]. Proceedings of
dc.relation.referencesthe Scientific Society. Shevchenko. 7(40), 68–75.
dc.relation.references(in Ukrainian). http://dspace.nbuv.gov.ua/handle/123456789/73450
dc.relation.referencesSavchyn, I., Tretyak, K., Petrov, S., Zaiats, O. &
dc.relation.referencesBrusak, I. (2019). Monitoring of mine fields at
dc.relation.referencesStebnyk potassium deposit area by a geodetic and
dc.relation.referencesgeotechnical method. European Association of
dc.relation.referencesGeoscientists & Engineers. 1, 1–5. https://doi.org/10.3997/2214- 4609.201902169
dc.relation.referencesShalan, M. A., Arora, M. K.,& Elgy, J. (2004).
dc.relation.referencesCASCAM: Crisp and Soft Classification Accuracy
dc.relation.referencesMeasurement Software. URL: http://www.geocomputation.org/2003/Papers/Shalan_Paper.pdf
dc.relation.referencesSnitynskyi, V., Zelisko, O., Khirivskyi, P., Mazurak, O.,
dc.relation.referencesKrektun, B., & Korinec, Yu. (2021). Hydrogeological
dc.relation.referencesmonitoring of the Stebnyk potash ore deposit
dc.relation.referencesin Drohobych district in Lviv region. Bulletin of
dc.relation.referencesLviv National Anrar University. Section Ecology, 5–8. https://doi.org/10.31734/agronomy2021.01.005
dc.relation.referencesSteffen W., Broadgate W., Deutsch L., Gaffney O.,
dc.relation.referencesLudwig C. (2015). The trajectory of the Anthropocene:
dc.relation.referencesthe great acceleration. The Anthropocene
dc.relation.referencesReview. Vol. 2(1), P. 81–98. https://doi.org/10.1177/2053019614564785
dc.relation.referencesSzabó, J., Dávid, L., & Lóczy, D. (2010). Anthropogenic
dc.relation.referencesgeomorphology: a guide to manmade landforms.
dc.relation.referencesHungary: Springer Science Business Media.
dc.relation.referenceshttps://doi.org/10.1007/978-90-481-3058-0
dc.relation.referencesTarolli, P., & Sofia, G. (2016). Human topographic
dc.relation.referencessignatures and derived geomorphic processes
dc.relation.referencesacross landscapes. Geomorpholog, 255, 140–161.
dc.relation.referenceshttps://doi.org/10.1016/j.geomorph.2015.12.007
dc.relation.referencesThilagavathi N., Subramani T., Suresh M. (2015).
dc.relation.referencesLand use/land cover change detection analysis in
dc.relation.referencesSalem chalk hills, South India using remote
dc.relation.referencessensing and GIS. Disaster Adv. Vol. 8. P. 44–52.
dc.relation.referenceshttps://journals.sagepub.com/doi/full/10.1177/1178622117751603
dc.relation.referencesTucker C. J. (1979) Red and photographic infrared
dc.relation.referenceslinear combinations monitoring vegetation.
dc.relation.referencesJournal of Remote Sensing Environment, 8(2),127–150. https://doi.org/10.1016/0034-4257(7990013-0
dc.relation.referencesWaters C., Zalasiewicz J., Williams M., Ellis M.,
dc.relation.referencesSnelling A. A stratigraphical basis for the Anthropocene?
dc.relation.referencesSpecial Publications. 2014. Vol. 395.
dc.relation.referencesP. 1–21. https://pubs.geoscienceworld.org/gsl/books/book/1761/A-Stratigraphical-Basis-for-the-Anthropocene
dc.relation.referencesZaiats, O., Navodych, M., Petrov, S., & Tretyak, K.
dc.relation.references(2017). Precise tilt measurements for monitoring
dc.relation.referencesof mine fields at Stebnyk potassium deposit area.
dc.relation.referencesGeodynamics, 2(23), 25–33. https://doi.org/10.23939/jgd2017.02.025
dc.relation.referencesenAyele, G. T., Tebeje, A. K., Demissie, S. S., Belete, M. A.,
dc.relation.referencesenJemberrie, M. A., Teshome, W. M., ... & Teshale, E. Z.
dc.relation.referencesen(2018). Time series land cover mapping and
dc.relation.referencesenchange detection analysis using geographic information
dc.relation.referencesensystem and remote sensing, Northern
dc.relation.referencesenEthiopia. Air, Soil and Water Research, 11,
dc.relation.referencesenhttps://doi.org/10.1177/1178622117751603
dc.relation.referencesenBurshtinska, Kh., & Stankevich, A. (2010). Aerospace
dc.relation.referencesenshooting systems. Lviv: Lviv Polytechnic National
dc.relation.referencesenUniversity Publishing House. (in Ukrainian).
dc.relation.referencesenChepurna, T. B., & Samborska, O. I. (2017). Neural
dc.relation.referencesennetwork modeling of subsidence dynamics on the
dc.relation.referencesenterritory of Stebnyk mining and chemical
dc.relation.referencesenenterprise "POLYMINERAL". The International
dc.relation.referencesenResearch and Practice Conference "ECOGEOFORUM-2017. Actual Problems and Innovations".
dc.relation.referencesen(in Ukrainian). http://elar.nung.edu.ua/bitstream/123456789/8891/1/8600p.pdf
dc.relation.referencesenChiesura, A., & De Groot, R. (2003). Critical natural
dc.relation.referencesencapital: a socio-cultural perspective. Ecological
dc.relation.referencesenEconomics, 44(2-3), 219-231. https://doi.org/10.1016/S0921-8009(02)00275-6
dc.relation.referencesenCoops N.C., Tooke T.R. Introduction to Remote
dc.relation.referencesenSensing. Learning Landscape Ecology. Springer. 2017. https://doi.org/10.1007/978-1-4939-6374-4_1
dc.relation.referencesenCracknell, A. P. (2018). The development of remote
dc.relation.referencesensensing in the last 40 years. International Journal
dc.relation.referencesenof Remote Sensing, 39(23), 8387–8427.
dc.relation.referencesenhttps://doi.org/10.1080/01431161.2018.1550919
dc.relation.referencesenDhingra, S., & Kumar, D. (2019). A review of
dc.relation.referencesenremotely sensed satellite image classification.
dc.relation.referencesenInternational Journal of Electrical & Computer
dc.relation.referencesenEngineering (2088-8708), 9(3). https://doi.org/10.11591/ijece.v9i3.pp.1720–1731
dc.relation.referencesenDyakiv V., Hevpa Z., & Kovalchuk M. (2019).
dc.relation.referencesenGeoecological characteristics and hydrochemical
dc.relation.referencesencomposition of water layers in karst lake, formed
dc.relation.referencesenon the site failure number 27, over mine number 2
dc.relation.referencesenStebnyk, plant "Polimineral". State Commission
dc.relation.referencesenof Ukraine on Mineral Reserves, pp. 215–221. (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenGaffney, O., & Steffen, W. (2017). The anthropocene
dc.relation.referencesenequation. The Anthropocene Review, 4(1), 53–61.
dc.relation.referencesenhttps://doi.org/10.1177/2053019616688022
dc.relation.referencesenGergel, S. E., & Turner, M. G. (Eds.). (2017).
dc.relation.referencesenLearning landscape ecology: a practical guide to
dc.relation.referencesenconcepts and techniques. Springer. https://doi.org/10.1007/978-1-4939-6374-4
dc.relation.referencesenGong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y.,
dc.relation.referencesenLiang, L., ... & Chen, J. (2013). Finer resolution
dc.relation.referencesenobservation and monitoring of global land cover:
dc.relation.referencesenFirst mapping results with Landsat TM and ETM+
dc.relation.referencesendata. International Journal of Remote Sensing, 34(7), 2607–2654. https://doi.org/10.1080/01431161.2012.748992
dc.relation.referencesenGotinyan V., Tomchenko O. (2009). Estimation of
dc.relation.referencesentendencies of karst processes manifestation on
dc.relation.referencesenremote sensing materials (on the example of
dc.relation.referencesenStebnyk deposit of potassium salts). Bulletin of
dc.relation.referencesenGeodesy and Cartography. (5), 24–27.
dc.relation.referencesenHatfield, J., & Moran, S. (2014). Agriculture and
dc.relation.referencesenRemote Sensing. Encyclopedia of Remote Sensing.
dc.relation.referencesenhttps://doi.org/10.1007/978-0-387-36699-9_6
dc.relation.referencesenHuan Y., Xiangmeng L., Bo K., Ruopu L., &
dc.relation.referencesenGuangxing W. (2019). Landscape ecology development
dc.relation.referencesensupported by geospatial technologies: A
dc.relation.referencesenreview. Ecological Informatic, 51, 185–192.
dc.relation.referencesenhttps://doi.org/10.1016/j.ecoinf.2019.03.006.
dc.relation.referencesenKolios, S., & Stylios, C. D. (2013). Identification of
dc.relation.referencesenland cover/land use changes in the greater area of
dc.relation.referencesenthe Preveza peninsula in Greece using Landsat
dc.relation.referencesensatellite data. Applied Geography, 40, 150–160.
dc.relation.referencesenhttps://doi.org/10.1016/j.apgeog.2013.02.005
dc.relation.referencesenKuzmenko, E. D., Maksymchuk, V. Y., Bagriy, S. M.,
dc.relation.referencesenSapuzhak, O. Y., Chepurnyi, I. V., Deshchytsya, S. A.,
dc.relation.referencesen& Dzoba, U. O. (2019). Integration of electric
dc.relation.referencesenprospectingmethods for forecasting the subsidence
dc.relation.referencesenand sinkholes within the salt deposits in the
dc.relation.referencesenPrecarpathian area. Geodynamics, 2 (27), 54–65.
dc.relation.referencesenLi, J., Yang, L., Pu, R., & Liu, Y. (2017). A review on
dc.relation.referencesenanthropogenic geomorphology. Journal of Geographical
dc.relation.referencesenSciences, 27(1), 109–128. https://doi.org/10.1007/s11442-017-1367-7
dc.relation.referencesenLi-An, C., Billa, L., & Azari, M. (2018). Anthropocene
dc.relation.referencesenclimate and landscape change that increases
dc.relation.referencesenflood disasters. Int J Hydro, 2(4), 487–491.
dc.relation.referencesenhttps://doi.org/10.15406/ijh.2018.02.00115
dc.relation.referencesenNewton, A. C., Hill, R. A., Echeverría, C., Golicher, D.,
dc.relation.referencesenRey Benayas, J. M., Cayuela, L., & Hinsley, S. A.
dc.relation.referencesen(2009). Remote sensing and the future of
dc.relation.referencesenlandscape ecology. Progress in Physical Geography, 33(4), 528–546. https://doi.org/10.1177/0309133309346882
dc.relation.referencesenPelenc, J., & Ballet, J. (2015). Strong sustainability,
dc.relation.referencesencritical natural capital and the capability
dc.relation.referencesenapproach. Ecological economics, 112, 36–44.
dc.relation.referencesenRiese, F. M., Keller, S., & Hinz, S. (2019). Supervised
dc.relation.referencesenand semi-supervised self-organizing maps
dc.relation.referencesenfor regression and classification focusing on
dc.relation.referencesenhyperspectral data. Remote Sensing, 12(1), 7.
dc.relation.referencesenhttps://doi.org/10.3390/rs12010007
dc.relation.referencesenRudko, G., & Bondarenko, M. (2001). The
dc.relation.referencesentechnogenic ecological safety of the salt and
dc.relation.referencesensulphur minings of Lviv region]. Proceedings of
dc.relation.referencesenthe Scientific Society. Shevchenko. 7(40), 68–75.
dc.relation.referencesen(in Ukrainian). http://dspace.nbuv.gov.ua/handle/123456789/73450
dc.relation.referencesenSavchyn, I., Tretyak, K., Petrov, S., Zaiats, O. &
dc.relation.referencesenBrusak, I. (2019). Monitoring of mine fields at
dc.relation.referencesenStebnyk potassium deposit area by a geodetic and
dc.relation.referencesengeotechnical method. European Association of
dc.relation.referencesenGeoscientists & Engineers. 1, 1–5. https://doi.org/10.3997/2214- 4609.201902169
dc.relation.referencesenShalan, M. A., Arora, M. K.,& Elgy, J. (2004).
dc.relation.referencesenCASCAM: Crisp and Soft Classification Accuracy
dc.relation.referencesenMeasurement Software. URL: http://www.geocomputation.org/2003/Papers/Shalan_Paper.pdf
dc.relation.referencesenSnitynskyi, V., Zelisko, O., Khirivskyi, P., Mazurak, O.,
dc.relation.referencesenKrektun, B., & Korinec, Yu. (2021). Hydrogeological
dc.relation.referencesenmonitoring of the Stebnyk potash ore deposit
dc.relation.referencesenin Drohobych district in Lviv region. Bulletin of
dc.relation.referencesenLviv National Anrar University. Section Ecology, 5–8. https://doi.org/10.31734/agronomy2021.01.005
dc.relation.referencesenSteffen W., Broadgate W., Deutsch L., Gaffney O.,
dc.relation.referencesenLudwig C. (2015). The trajectory of the Anthropocene:
dc.relation.referencesenthe great acceleration. The Anthropocene
dc.relation.referencesenReview. Vol. 2(1), P. 81–98. https://doi.org/10.1177/2053019614564785
dc.relation.referencesenSzabó, J., Dávid, L., & Lóczy, D. (2010). Anthropogenic
dc.relation.referencesengeomorphology: a guide to manmade landforms.
dc.relation.referencesenHungary: Springer Science Business Media.
dc.relation.referencesenhttps://doi.org/10.1007/978-90-481-3058-0
dc.relation.referencesenTarolli, P., & Sofia, G. (2016). Human topographic
dc.relation.referencesensignatures and derived geomorphic processes
dc.relation.referencesenacross landscapes. Geomorpholog, 255, 140–161.
dc.relation.referencesenhttps://doi.org/10.1016/j.geomorph.2015.12.007
dc.relation.referencesenThilagavathi N., Subramani T., Suresh M. (2015).
dc.relation.referencesenLand use/land cover change detection analysis in
dc.relation.referencesenSalem chalk hills, South India using remote
dc.relation.referencesensensing and GIS. Disaster Adv. Vol. 8. P. 44–52.
dc.relation.referencesenhttps://journals.sagepub.com/doi/full/10.1177/1178622117751603
dc.relation.referencesenTucker C. J. (1979) Red and photographic infrared
dc.relation.referencesenlinear combinations monitoring vegetation.
dc.relation.referencesenJournal of Remote Sensing Environment, 8(2),127–150. https://doi.org/10.1016/0034-4257(7990013-0
dc.relation.referencesenWaters C., Zalasiewicz J., Williams M., Ellis M.,
dc.relation.referencesenSnelling A. A stratigraphical basis for the Anthropocene?
dc.relation.referencesenSpecial Publications. 2014. Vol. 395.
dc.relation.referencesenP. 1–21. https://pubs.geoscienceworld.org/gsl/books/book/1761/A-Stratigraphical-Basis-for-the-Anthropocene
dc.relation.referencesenZaiats, O., Navodych, M., Petrov, S., & Tretyak, K.
dc.relation.referencesen(2017). Precise tilt measurements for monitoring
dc.relation.referencesenof mine fields at Stebnyk potassium deposit area.
dc.relation.referencesenGeodynamics, 2(23), 25–33. https://doi.org/10.23939/jgd2017.02.025
dc.relation.urihttps://doi.org/10.1177/1178622117751603
dc.relation.urihttp://elar.nung.edu.ua/bitstream/123456789/8891/1/8600p.pdf
dc.relation.urihttps://doi.org/10.1016/S0921-8009(02)00275-6
dc.relation.urihttps://doi.org/10.1007/978-1-4939-6374-4_1
dc.relation.urihttps://doi.org/10.1080/01431161.2018.1550919
dc.relation.urihttps://doi.org/10.11591/ijece.v9i3.pp.1720–1731
dc.relation.urihttps://doi.org/10.1177/2053019616688022
dc.relation.urihttps://doi.org/10.1007/978-1-4939-6374-4
dc.relation.urihttps://doi.org/10.1080/01431161.2012.748992
dc.relation.urihttps://doi.org/10.1007/978-0-387-36699-9_6
dc.relation.urihttps://doi.org/10.1016/j.ecoinf.2019.03.006
dc.relation.urihttps://doi.org/10.1016/j.apgeog.2013.02.005
dc.relation.urihttps://doi.org/10.1007/s11442-017-1367-7
dc.relation.urihttps://doi.org/10.15406/ijh.2018.02.00115
dc.relation.urihttps://doi.org/10.1177/0309133309346882
dc.relation.urihttps://doi.org/10.3390/rs12010007
dc.relation.urihttp://dspace.nbuv.gov.ua/handle/123456789/73450
dc.relation.urihttps://doi.org/10.3997/2214-
dc.relation.urihttp://www.geocomputation.org/2003/Papers/Shalan_Paper.pdf
dc.relation.urihttps://doi.org/10.31734/agronomy2021.01.005
dc.relation.urihttps://doi.org/10.1177/2053019614564785
dc.relation.urihttps://doi.org/10.1007/978-90-481-3058-0
dc.relation.urihttps://doi.org/10.1016/j.geomorph.2015.12.007
dc.relation.urihttps://journals.sagepub.com/doi/full/10.1177/1178622117751603
dc.relation.urihttps://doi.org/10.1016/0034-4257(7990013-0
dc.relation.urihttps://pubs.geoscienceworld.org/gsl/books/book/1761/A-Stratigraphical-Basis-for-the-Anthropocene
dc.relation.urihttps://doi.org/10.23939/jgd2017.02.025
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2022
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2022
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Hlotov Volodymyr, Biala Myroslava
dc.subjectдані дистанційного зондування Землі
dc.subjectмоніторинг
dc.subjectантропогенна активність
dc.subjectконтрольована класифікація
dc.subjectNDVI
dc.subjectEarth remote sensing data
dc.subjectmonitoring
dc.subjectanthropogenic activity
dc.subjectsupervised image classification
dc.subjectNDVI
dc.subject.udc528.721
dc.titleSpatial-temporal geodynamics monitoring of land-use and land cover changes in Stebnyk, Ukraine based on Earth remote sensing data
dc.title.alternativeМоніторинг просторово-часових геодинамічних змін складу категорій земель на прикладі регіону міста Стебник за даними дистанційного зондування Землі
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022n1_32__Hlotov_V-Spatial_temporal_geodynamics_5-15.pdf
Size:
838.74 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022n1_32__Hlotov_V-Spatial_temporal_geodynamics_5-15__COVER.png
Size:
509.55 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: