Study of lyophilic properties of pyrocarbon as a potential sorbent for cleaning water from oil and oil products

dc.citation.epage77
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage71
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГринишин, С. О.
dc.contributor.authorЗнак, З. О.
dc.contributor.authorHrynyshyn, S. O.
dc.contributor.authorZnak, Z. O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:59:41Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДосліджено ліофільні властивості пірокарбону, отриманого піролізом зношених автомобільних шин, щодо нафти, бензину, бензену, гексану, води та емульсій вода-нафта і вода-бензин. Дослідження виконували методом лежачої краплі на поверхні, утвореної частинками пірокарбону різної дисперсності, визначивши крайовий кут змочування. Значення цього кута визначали, аналізуючи зображення, отримані фотографічно. Встановлено, що органічним речовинам і воді притаманна значна контрастність щодо змочування пірокарбону. На основі визначення крайового кута змочування розраховано роботу адгезії у різних системах залежно від температури. На підставі цього сформульовано висновок, що селективність поглинання нафти і нафтопродуктів зростатиме зі збільшенням температури.
dc.description.abstractThe lyophilic properties of pyrocarbon, obtained by pyrolysis of worn automobile tires, in relation to oil, gasoline, benzene, hexane, water, and water-oil and water-gasoline emulsions were studied. The research was carried out by the method of a lying drop on the surface formed by pyrocarbon particles of different dispersion, by determining the contact angle of wetting. The value of this angle was determined by analyzing images obtained photographically. It was established that organic substances and water have a significant contrast in terms of the wetting of pyrocarbon. Based on the determination of the contact angle, the work of adhesion in different systems was calculated depending on the temperature. Based on this, the conclusion was formulated that the selectivity of absorption of oil and oil products will increase with increasing temperature.
dc.format.extent71-77
dc.format.pages7
dc.identifier.citationHrynyshyn S. O. Study of lyophilic properties of pyrocarbon as a potential sorbent for cleaning water from oil and oil products / S. O. Hrynyshyn, Z. O. Znak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 71–77.
dc.identifier.citationenHrynyshyn S. O. Study of lyophilic properties of pyrocarbon as a potential sorbent for cleaning water from oil and oil products / S. O. Hrynyshyn, Z. O. Znak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 71–77.
dc.identifier.doidoi.org/10.23939/ctas2024.01.071
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111729
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. O. Ya. Pylypchuk, T. I. Vysots'ka, T. V. Pichkur (2020). Znyzhennya vplyvu zaliznychnoho transportu na navkolyshnye seredovyshche: problema ochyshchennya gruntu vid naftoproduktiv. Ekolohichni nauky. 3(30), 113-118. doi.org/10.32846/2306-9716/2020.eco.3-30.19 (in Ukrainian)
dc.relation.references2. L. V. Krychkovs'ka, Ye. A. Yelnahhar, V. L. Dubonosov. (2019). Poshuky sorbentiv dlya elyuatsiyi naftoproduktiv z vody. Visnyk Natsional'noho tekhnichnoho universytetu «KhPI» Seriya: Khimiya, khimichna tekhnolohiya ta ekolohiya. 2, 47-52. doi: 10.20998/2079-0821.2019.02.07 (in Ukrainian)
dc.relation.references3. P. Qi, N. Lin, Y. Liu, J. Zhao. (2013). Improvement of oil/water selectivity by stearic acid modified expanded perlite for oil spill cleanup. J. Shanghai Jiaotong Univ., 18, 500-507. doi.org/10.1007/s12204-013-1426-x
dc.relation.references4. D. Zadaka-Amir, N. Bleiman, Y.G. Mishael. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater., 169, 153-159. doi.org/10.1016/j.micromeso.2012.11.002
dc.relation.references5. Zenovii Znak, Roman Mnykh, M.A. Pyrig, T. V. Zhuk (2022). Research of Oil Sorption by Natural Clinoptylolite // "Chemistry, technology and application of substances", Volume 5, Number 2: 58-64. https://doi.org/10.23939/ctas2022.02.058
dc.relation.references6. E. Barry,A.U. Mane, J.A. Libera,J.W. Elam,S.B. Darling. (2017). Advanced oil sorbents using sequential infiltration synthesis. J. Mater. Chem. A, 5, 2929-2935. doi.org/10.1039/C6TA09014A
dc.relation.references7. S. Bayraktaroglu, S. Kizil, H. B. Sonmez. (2021). A highly reusable polydimethylsiloxane sorbents for oil/organic solvent clean-up from water. Journal of Environmental Chemical Engineering, 9 (5), 106002. doi.org/10.1016/j.jece.2021.106002
dc.relation.references8. J. Wang, H. Wang, G. Geng. (2018). Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route. Mar. Pollut. Bull. 127, 108-116. doi.org/10.1016/j.marpolbul.2017.11.060.
dc.relation.references9. P. Narayanan, A. Ravirajan, A. Umasankaran, D.G. Prakash, P.S. Kumar. (2018). Theoretical and experimental investigation on the removal of oil spill by selective sorbents. J. Ind. Eng. Chem. 63, 1-11. doi.org/10.1016/j.jiec.2018.01.031
dc.relation.references10. H. Zhu, S. Qiu, W. Jiang, D. Wu, C. Zhang. (2011). Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup. Environ. Sci. Technol. 45. 4527-4531. doi.org/10.1021/es2002343
dc.relation.references11. E. Piperopoulos, L. Calabrese, A. Khaskhoussi, E. Proverbio, C. Milone. (2020). Thermo-Physical Characterization of Carbon Nanotube Composite Foam for Oil Recovery Applications. Nanomaterials, 10, 86. doi.org/10.3390/nano10010086
dc.relation.references12. S. O. Hrynyshyn, Zenovii Znak, Ksenia Hrynyshyn, Volodymyr Skorokhoda (2023). Use of pyrocarbon obtained in the process of pyrolysis of rubber waste for absorption of oil and Petroleum products. Chemistry, Technology and Application of Substances. 6, 11. 27-31. https://doi.org/10.23939/ctas2023.01.027 (in Ukrainian)
dc.relation.references13.Daniel Bonn, Jens Eggers, Joseph Indekeu, Jacques Meunier, Etienne Rolley (2009)/ Wetting and spreading. Rev. Mod. Phys. 81, 739 - 805. https://doi.org/10.1103/RevModPhys.81.739
dc.relation.references14. Horielov V. O., Kisil R. I., Bodnar R. T., Stepaniuk Ya. V. (2004). Vyznachennia kraiovoho kuta zmochuvannia ridynamy poverkhon tverdykh til shliakhom vymiriuvannia heometrychnykh rozmiriv lezhachoi krapli. Metody ta prylady kontroliu yakosti, № 12, 38-41.
dc.relation.referencesen1. O. Ya. Pylypchuk, T. I. Vysots'ka, T. V. Pichkur (2020). Znyzhennya vplyvu zaliznychnoho transportu na navkolyshnye seredovyshche: problema ochyshchennya gruntu vid naftoproduktiv. Ekolohichni nauky. 3(30), 113-118. doi.org/10.32846/2306-9716/2020.eco.3-30.19 (in Ukrainian)
dc.relation.referencesen2. L. V. Krychkovs'ka, Ye. A. Yelnahhar, V. L. Dubonosov. (2019). Poshuky sorbentiv dlya elyuatsiyi naftoproduktiv z vody. Visnyk Natsional'noho tekhnichnoho universytetu "KhPI" Seriya: Khimiya, khimichna tekhnolohiya ta ekolohiya. 2, 47-52. doi: 10.20998/2079-0821.2019.02.07 (in Ukrainian)
dc.relation.referencesen3. P. Qi, N. Lin, Y. Liu, J. Zhao. (2013). Improvement of oil/water selectivity by stearic acid modified expanded perlite for oil spill cleanup. J. Shanghai Jiaotong Univ., 18, 500-507. doi.org/10.1007/s12204-013-1426-x
dc.relation.referencesen4. D. Zadaka-Amir, N. Bleiman, Y.G. Mishael. (2013). Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater., 169, 153-159. doi.org/10.1016/j.micromeso.2012.11.002
dc.relation.referencesen5. Zenovii Znak, Roman Mnykh, M.A. Pyrig, T. V. Zhuk (2022). Research of Oil Sorption by Natural Clinoptylolite, "Chemistry, technology and application of substances", Volume 5, Number 2: 58-64. https://doi.org/10.23939/ctas2022.02.058
dc.relation.referencesen6. E. Barry,A.U. Mane, J.A. Libera,J.W. Elam,S.B. Darling. (2017). Advanced oil sorbents using sequential infiltration synthesis. J. Mater. Chem. A, 5, 2929-2935. doi.org/10.1039/P.6TA09014A
dc.relation.referencesen7. S. Bayraktaroglu, S. Kizil, H. B. Sonmez. (2021). A highly reusable polydimethylsiloxane sorbents for oil/organic solvent clean-up from water. Journal of Environmental Chemical Engineering, 9 (5), 106002. doi.org/10.1016/j.jece.2021.106002
dc.relation.referencesen8. J. Wang, H. Wang, G. Geng. (2018). Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route. Mar. Pollut. Bull. 127, 108-116. doi.org/10.1016/j.marpolbul.2017.11.060.
dc.relation.referencesen9. P. Narayanan, A. Ravirajan, A. Umasankaran, D.G. Prakash, P.S. Kumar. (2018). Theoretical and experimental investigation on the removal of oil spill by selective sorbents. J. Ind. Eng. Chem. 63, 1-11. doi.org/10.1016/j.jiec.2018.01.031
dc.relation.referencesen10. H. Zhu, S. Qiu, W. Jiang, D. Wu, C. Zhang. (2011). Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup. Environ. Sci. Technol. 45. 4527-4531. doi.org/10.1021/es2002343
dc.relation.referencesen11. E. Piperopoulos, L. Calabrese, A. Khaskhoussi, E. Proverbio, C. Milone. (2020). Thermo-Physical Characterization of Carbon Nanotube Composite Foam for Oil Recovery Applications. Nanomaterials, 10, 86. doi.org/10.3390/nano10010086
dc.relation.referencesen12. S. O. Hrynyshyn, Zenovii Znak, Ksenia Hrynyshyn, Volodymyr Skorokhoda (2023). Use of pyrocarbon obtained in the process of pyrolysis of rubber waste for absorption of oil and Petroleum products. Chemistry, Technology and Application of Substances. 6, 11. 27-31. https://doi.org/10.23939/ctas2023.01.027 (in Ukrainian)
dc.relation.referencesen13.Daniel Bonn, Jens Eggers, Joseph Indekeu, Jacques Meunier, Etienne Rolley (2009)/ Wetting and spreading. Rev. Mod. Phys. 81, 739 - 805. https://doi.org/10.1103/RevModPhys.81.739
dc.relation.referencesen14. Horielov V. O., Kisil R. I., Bodnar R. T., Stepaniuk Ya. V. (2004). Vyznachennia kraiovoho kuta zmochuvannia ridynamy poverkhon tverdykh til shliakhom vymiriuvannia heometrychnykh rozmiriv lezhachoi krapli. Metody ta prylady kontroliu yakosti, No 12, 38-41.
dc.relation.urihttps://doi.org/10.23939/ctas2022.02.058
dc.relation.urihttps://doi.org/10.23939/ctas2023.01.027
dc.relation.urihttps://doi.org/10.1103/RevModPhys.81.739
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectпірокарбон
dc.subjectочищення природних і стічних вод
dc.subjectліофільні властивості
dc.subjectкрайовий кут змочування
dc.subjectсорбція
dc.subjectробота адгезії
dc.subjectpyrocarbon
dc.subjectnatural and wastewater treatment
dc.subjectlyophilic properties
dc.subjectcontact angle
dc.subjectsorption
dc.subjectwork of adhesion
dc.titleStudy of lyophilic properties of pyrocarbon as a potential sorbent for cleaning water from oil and oil products
dc.title.alternativeДослідження ліофільних властивостей пірокарбону як потенційного сорбента для очищення вод від нафти і нафтопродуктів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Hrynyshyn_S_O-Study_of_lyophilic_properties_71-77.pdf
Size:
650.15 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Hrynyshyn_S_O-Study_of_lyophilic_properties_71-77__COVER.png
Size:
457.7 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: