Calculation of expansibility factor of gas at its flow through an orifice plate with flange pressure tappings
dc.citation.journalTitle | Energy Engineering and Control Systems | |
dc.contributor.affiliation | Lviv Polytechnic National University | uk_UA |
dc.contributor.author | Pistun, Yevhen | |
dc.contributor.author | Lesovoy, Leonid | |
dc.coverage.country | UA | uk_UA |
dc.coverage.placename | Львів | uk_UA |
dc.date.accessioned | 2018-07-16T08:52:53Z | |
dc.date.available | 2018-07-16T08:52:53Z | |
dc.date.issued | 2016 | |
dc.description.abstract | The values of expansibility factor of gas were defined more accurately based on the values obtained by Seidl in CEESI using the equation of mass flowrate and on the basis of experimental data (differential pressure across the orifice plate, mass flowrate, absolute static pressure and temperature of air) for orifice plates with flange pressure tappings and diameter ratios of 0.242, 0.363, 0.484, 0.5445, 0.6655, 0.728 and pipe internal diameter of 52.48 mm (2.066 in.). When obtaining the values of expansibility factor of gas, the Stolz equation was used by Seidl to calculate the discharge coefficient for Reynolds numbers equal to infinity. New values of expansibility factor of gas are defined more accurately by us with taking into account the Reader-Harris/Gallagher equation for calculating the discharge coefficient for the actual Reynolds numbers of gas in the pipe. Based on these new more accurate data a new equation for calculating the expansibility factor of gas for orifice plate with flange pressure tappings is developed. The comparison and analysis of the expansibility factor calculated according to the equation given in ISO 5167:2-2003 and according to the new developed equation is presented in the paper. The equation in ISO 5167:2-2003 for computing the gas expansibility factor is developed for all three types of pressure tappings arrangement. In this case the scattering of discharge coefficient values being applied for deriving the expansibility factor equation is large for the same set of input data. It is shown that the shortcomings mentioned above are eliminated in the new equation and the standard deviation of the expansibility factor calculated according to the new equation from the new accurate experimental values is smaller. New formula for calculating the relative expanded uncertainty of expansibility factor for orifice plate with flange pressure tappings is also presented in the paper. Наведено уточнені значення коефіцієнта розширення газу на основі значень, що їх отримав Давид Зейдль у Колорадському інженерно-експериментальному центрі (CEESI) із застосуванням рівняння масової витрати газу для діафрагми з фланцевим способом відбору тиску, і значень відносного діаметра отвору діафрагми від 0,242 до 0,728 для значення внутрішнього діаметра трубопроводу 52,48 мм (2,066 дюйма). Під час отримання значень коефіцієнта розширення Зейдль застосував рівняння коефіцієнта витікання Штольца для значення числа Рейнольдса рівного нескінченності. Автори уточнили значення коефіцієнта розширення газу, застосовуючи нове рівняння коефіцієнта витікання Рідера-Харіса/Галахера для реальних значень числа Рейнольдса. На базі уточнених значень коефіцієнта розширення газу автори розробили нове рівняння для його розрахунку, що зменшило максимальне відхилення значення коефіцієнта розширення газу відносно рівняння, яке застосовується в ISO 5167-2:2003. Автори також розробили нове рівняння для розрахунку відносної розширеної невизначеності коефіцієнта розширення повітря, яке також наведено у статті. | uk_UA |
dc.format.pages | 34–42 | |
dc.identifier.citation | Pistun Ye. Calculation of expansibility factor of gas at its flow through an orifice plate with flange pressure tappings / Ye. Pistun, L. Lesovoy // Energy Engineering and Control Systems. – 2016. – Volume 2, number 2. – P. 34–42. – Bibliography: 15 titles. | uk_UA |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/42396 | |
dc.language.iso | en | uk_UA |
dc.publisher | Publishing House of Lviv Polytechnic National University | uk_UA |
dc.relation.references | [1] Buckingham E. Notes on the orifice meter: the expansion factor for gases / Е. Buckingham // Bureau of Standards Journal of Research, Research Paper. – 1932. – No. 459, Vol. 9. [2] ISO 5167-1:1991 (E). Measurement of fluid flow by means of pressure differential devices. – Part 1: Orifice plates, nozzles and Venturi tubes inserted in circular cross-section conduits running full. [3] Rules for measurement of flowrate of gases and liquids by means of standard pressure differential devices: RD 50-213-80. – Official document. – Moscow: Publishing house of standards, 1982. (in Russian) [4] Measurement of flowrate and volume of liquids and gases by means of pressure differential method. Orifice plates, ISA 1932 nozzles and Venturi tubes inserted in circular cross-section conduits running full. Technical conditions: GOST 8.563.1-97 GSI. – [Valid since 01.01.1997]. – Moscow: Publishing house of standards, 1998. (in Russian) [5] Reader-Harris M. J., Sattary J. A. and Spearman E. P. The orifice plate discharge coefficient equation. Progress Report № PR14: EUEC/17 (EEC005). East Kilbride, Glasgow: National Engineering Laboratory Executive Agency. – May 1996. [6] Reader-Harris M. J. and Sattary J.A. The orifice plate discharge coefficient equation – the equation for ISO 5167–1. In proc. of 14th North Sea Flow Measurement Workshop, Peebles, Scotland, East Kilbride, Glasgow, National Engineering Laboratory, October 1996. – Р. 24. [7] Experimental data for the determination of basic 50mm orifice plate discharge coefficients – European programme for commission of the European Communities. Rep. N PR12: EUEC/17 (EEC005), May 1992. [8] Experimental data for the determination of basic 600mm orifice plate discharge coefficients – European programme compiled by E. P. Spearman and J. A. Sattary (Flow Centre) NEL, East Kilbride, Scotland. Rep. N PR12: EUEC/17 (EEC005), May 1992. [9] Gasunie Research. Orifice measurements according to ISO 5167 at Bernoulli Laboratory / Westerbork. Rep. RG 02.0326, May 2002. [10] Thibessard G. Über die Expansionszahl bei der Durchfluβmessung mit Normblenden / G. Thibessard. – Brennstoff-Wärme-Kraft, 1960. – Vol. 12, Nr. 3. – Р. 97–101. [11] Reader-Harris M. J. The equation for the expansibility factor for orifice plates / M.J. Reader-Harris // FLOMEKO 98. – Sweden, June 1998. – Р. 209–214. [12] Reid J. Tests to determine orifice plate expansibility factors. Progress Report No, PR6: EUEC/03 for EEC.Community Bureau of Reference (BCR) / J. Reid / East Kilbride, Scotland: National Engineering Laboratory. – 1981. [13] NATIONAL ENGINEERING LABORATORY. Commissioning tests with 0.2 β ratio plate in EEC expansibility rig in air with Red of 35000 and reexamination of existing EEC data on expansibility. Report No. EUEC/21 for EEC Community Bureau of Reference (BCR). East Kilbridge, Scotland: National Engineering Laboratory, November. – 1988. [14] SEIDL W. The orifice expansion correction for a 50 mm line size at various diameter ratios. / W. SEIDL // In Proc. 3rd Int. Symp. On Fluid Flow Measurement, San Antonio, Texas. – 1995. [15] Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full: ISO 5167- 2:2003. – Part 2: Orifice plates. | uk_UA |
dc.rights.holder | © 2016, Pistun Y., Lesovoy L. Published by Lviv Polytechnic National University | uk_UA |
dc.subject | expansibility factor | uk_UA |
dc.subject | flowrate measurement | uk_UA |
dc.subject | orifice plate | uk_UA |
dc.subject | flange tappings | uk_UA |
dc.subject | коефіцієнт розширення | uk_UA |
dc.subject | коефіцієнт розширення | uk_UA |
dc.subject | діафрагма | uk_UA |
dc.subject | фланцевий спосіб відбору тиску | uk_UA |
dc.subject | невизначеність коефіцієнта розширення | uk_UA |
dc.title | Calculation of expansibility factor of gas at its flow through an orifice plate with flange pressure tappings | uk_UA |
dc.title.alternative | Розрахунок коефіцієнта розширення газу під час його протікання через діафрагму з фланцевим відбором тиску | uk_UA |
dc.type | Article | uk_UA |