Simulation of the gears stress-strain state of elbow orthosis planetary gearbox

dc.citation.epage45
dc.citation.issue2
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage33
dc.contributor.affiliationNational Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute”
dc.contributor.authorLavrenko, Iaroslav
dc.contributor.authorSushchenko, Maksym
dc.contributor.authorChaikovska, Olena
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-14T08:00:55Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractGear transmissions of various sizes are used in various fields of mechanical engineering, automotive, marine, and aerospace industries according to the needs. This paper presents the modeling and analysis of the modal and harmonic characteristics of a planetary gear transmission for an elbow orthosis. Orthoses are used during the rehabilitation of patients in the postoperative period or during the restoration of lost limb functions. When modeling the planetary gear, the connection elements are made of 45 steel and PLA polylactide. Using ANSYS Workbench, the planetary gear of the gearbox was analyzed for modal and harmonic characteristics at three different torque values: 1732 N-mm, 3464 N-mm, 5196 N-mm. The modal and harmonic analysis of the stress-strain state of the planetary gear is carried out, a comparative analysis is performed, and the vibration characteristics, including natural frequencies, mode shapes, and harmonic response, are discussed. Also, the stress-strain state of the sun-satellite contact problem made of steel 45 and PLA polylactide is calculated and the corresponding analytical calculation of equivalent contact stresses is performed according to Hertz’s theory.
dc.format.extent33-45
dc.format.pages13
dc.identifier.citationLavrenko I. Simulation of the gears stress-strain state of elbow orthosis planetary gearbox / Iaroslav Lavrenko, Maksym Sushchenko, Olena Chaikovska // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 2. — P. 33–45.
dc.identifier.citationenLavrenko I. Simulation of the gears stress-strain state of elbow orthosis planetary gearbox / Iaroslav Lavrenko, Maksym Sushchenko, Olena Chaikovska // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 2. — P. 33–45.
dc.identifier.doidoi.org/10.23939/ujmems2024.02.033
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/119265
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 2 (10), 2024
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 2 (10), 2024
dc.relation.references[1] U. Urbas, D. Zorko and N. Vukasinovic, "Machine learning based nominal root stress calculation model for gears with a progressive curved path of contact", Mechanism and Machine Theory, 165, 104430, 2021. https://doi.org/10.1016/j.mechmachtheory.2021.104430
dc.relation.references[2] S.-C. Hwang et al., "Contact stress analysis for a pair of mating gears", Mathematical and Computer Modelling, Vol. 57, pp. 40-49, 2013. https://doi.org/10.1016/j.mcm.2011.06.055
dc.relation.references[3] Santosh S. Patil, Saravanan Karuppanan, Ivana Atanasovska, Azmi Abdul Wahab, "Contact stress analysis of helical gear Pairs, including frictional Coefficients", International Journal of Mechanical Sciences, Vol. 85, pp. 205-211, 2014. https://doi.org/10.1016/j.ijmecsci.2014.05.013
dc.relation.references[4] Y.-C. Chen, C.-B. Tsay, "Stress analysis of a helical gear set with localized bearing contact", Finite Elements in Analysis and Design, Vol. 38, pp. 707 - 723, 2002. https://doi.org/10.1016/S0168-874X(01)00100-7
dc.relation.references[5] S.S. Patil et al., "Experimental measurement of strain and stress state at the contacting helical gear pairs", Measurement, Vol. 82, pp. 313-322, 2016. https://doi.org/10.1016/j.measurement.2015.12.046
dc.relation.references[6] S. Jyothirmai et al., "A Finite Element Approach to Bending, Contact and Fatigue Stress Distribution in Helical Gear Systems", Procedia Materials Science, Vol. 6, pp. 907 - 918, 2014. https://doi.org/10.1016/j.mspro.2014.07.159
dc.relation.references[7] R. Kurbet, V. Doddaswamy, C.M. Amruth et al., "Frequency response analysis of spur gear pair using FEA", Materials Today: Proceedings, Vol. 52, pp. 2327-2338, 2022. https://doi.org/10.1016/j.matpr.2021.12.517
dc.relation.references[8] Narendiranath Babu T et al., "Contact Stress Analysis on Composite Spur Gear using Finite Element Method", Materials Today: Proceedings, Vol. 5, pp. 13585-13592, 2018. https://doi.org/10.1016/j.matpr.2018.02.354
dc.relation.references[9] Z. Zhao, H. Han, P. Wang et al. "An improved model for meshing characteristics analysis of spur gears considering fractal surface contact and friction", Mechanism and Machine Theory, Vol. 158, 104219, 2021. https://doi.org/10.1016/j.mechmachtheory.2020.104219
dc.relation.references[10] I. Gonzalez-Perez et al., "Implementation of Hertz theory and validation of a finite element model for stress analysis of gear drives with localized bearing contact", Mechanism and Machine Theory, Vol. 46, pp. 765-783, 2011. https://doi.org/10.1016/j.mechmachtheory.2011.01.014
dc.relation.references[11] S. Li, "Effects of centrifugal load on tooth contact stresses and bending stresses of thin-rimmed spur gears with inclined webs", Mechanism and Machine Theory, Vol. 59, pp. 34-47, 2013. https://doi.org/10.1016/j.mechmachtheory.2012.08.011
dc.relation.references[12] T. Jabbour, G. Asmar, "Tooth stress calculation of metal spur and helical gears", Mechanism and Machine Theory, Vol. 92, pp. 375-390, 2015. https://doi.org/10.1016/j.mechmachtheory.2015.06.003
dc.relation.references[13] Q. Wen, Q. Du and X. Zhai, "Analytical calculation of the tooth surface contact stress of spur gear pairs with misalignment errors in multiple degrees of freedom", Mechanism and Machine Theory, Vol. 149, 103823, 2020. https://doi.org/10.1016/j.mechmachtheory.2020.103823
dc.relation.references[14] A.W. Hussein and M.Q. Abdullah, "High-contact ratio spur gears with conformal contact and reduced sliding", Results in Engineering, Vol. 14, 100412, 2022. https://doi.org/10.1016/j.rineng.2022.100412
dc.relation.references[15] M.L. Puneeth and G Mallesh, "Static contact behavior of asymmetric spur gear", Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.06.076
dc.relation.references[16] M.L. Puneeth and G. Mallesh, "Dynamic contact behavior of asymmetric spur gear", Materials Today: Proceedings, Vol. 44, pp. 2019-2027, 2021. https://doi.org/10.1016/j.matpr.2020.12.125
dc.relation.references[17] G. Gambirasio, M. Pesenti et al., "Design and Integration of a Low-Back Exoskeleton: A 3D-Printed Cycloidal Drive Actuator for Flexible Human-Robot Interaction", Computer-Aided Design & Applications, Vol. 21(5), pp. 791-806, 2024.
dc.relation.referencesen[1] U. Urbas, D. Zorko and N. Vukasinovic, "Machine learning based nominal root stress calculation model for gears with a progressive curved path of contact", Mechanism and Machine Theory, 165, 104430, 2021. https://doi.org/10.1016/j.mechmachtheory.2021.104430
dc.relation.referencesen[2] S.-C. Hwang et al., "Contact stress analysis for a pair of mating gears", Mathematical and Computer Modelling, Vol. 57, pp. 40-49, 2013. https://doi.org/10.1016/j.mcm.2011.06.055
dc.relation.referencesen[3] Santosh S. Patil, Saravanan Karuppanan, Ivana Atanasovska, Azmi Abdul Wahab, "Contact stress analysis of helical gear Pairs, including frictional Coefficients", International Journal of Mechanical Sciences, Vol. 85, pp. 205-211, 2014. https://doi.org/10.1016/j.ijmecsci.2014.05.013
dc.relation.referencesen[4] Y.-C. Chen, C.-B. Tsay, "Stress analysis of a helical gear set with localized bearing contact", Finite Elements in Analysis and Design, Vol. 38, pp. 707 - 723, 2002. https://doi.org/10.1016/S0168-874X(01)00100-7
dc.relation.referencesen[5] S.S. Patil et al., "Experimental measurement of strain and stress state at the contacting helical gear pairs", Measurement, Vol. 82, pp. 313-322, 2016. https://doi.org/10.1016/j.measurement.2015.12.046
dc.relation.referencesen[6] S. Jyothirmai et al., "A Finite Element Approach to Bending, Contact and Fatigue Stress Distribution in Helical Gear Systems", Procedia Materials Science, Vol. 6, pp. 907 - 918, 2014. https://doi.org/10.1016/j.mspro.2014.07.159
dc.relation.referencesen[7] R. Kurbet, V. Doddaswamy, C.M. Amruth et al., "Frequency response analysis of spur gear pair using FEA", Materials Today: Proceedings, Vol. 52, pp. 2327-2338, 2022. https://doi.org/10.1016/j.matpr.2021.12.517
dc.relation.referencesen[8] Narendiranath Babu T et al., "Contact Stress Analysis on Composite Spur Gear using Finite Element Method", Materials Today: Proceedings, Vol. 5, pp. 13585-13592, 2018. https://doi.org/10.1016/j.matpr.2018.02.354
dc.relation.referencesen[9] Z. Zhao, H. Han, P. Wang et al. "An improved model for meshing characteristics analysis of spur gears considering fractal surface contact and friction", Mechanism and Machine Theory, Vol. 158, 104219, 2021. https://doi.org/10.1016/j.mechmachtheory.2020.104219
dc.relation.referencesen[10] I. Gonzalez-Perez et al., "Implementation of Hertz theory and validation of a finite element model for stress analysis of gear drives with localized bearing contact", Mechanism and Machine Theory, Vol. 46, pp. 765-783, 2011. https://doi.org/10.1016/j.mechmachtheory.2011.01.014
dc.relation.referencesen[11] S. Li, "Effects of centrifugal load on tooth contact stresses and bending stresses of thin-rimmed spur gears with inclined webs", Mechanism and Machine Theory, Vol. 59, pp. 34-47, 2013. https://doi.org/10.1016/j.mechmachtheory.2012.08.011
dc.relation.referencesen[12] T. Jabbour, G. Asmar, "Tooth stress calculation of metal spur and helical gears", Mechanism and Machine Theory, Vol. 92, pp. 375-390, 2015. https://doi.org/10.1016/j.mechmachtheory.2015.06.003
dc.relation.referencesen[13] Q. Wen, Q. Du and X. Zhai, "Analytical calculation of the tooth surface contact stress of spur gear pairs with misalignment errors in multiple degrees of freedom", Mechanism and Machine Theory, Vol. 149, 103823, 2020. https://doi.org/10.1016/j.mechmachtheory.2020.103823
dc.relation.referencesen[14] A.W. Hussein and M.Q. Abdullah, "High-contact ratio spur gears with conformal contact and reduced sliding", Results in Engineering, Vol. 14, 100412, 2022. https://doi.org/10.1016/j.rineng.2022.100412
dc.relation.referencesen[15] M.L. Puneeth and G Mallesh, "Static contact behavior of asymmetric spur gear", Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.06.076
dc.relation.referencesen[16] M.L. Puneeth and G. Mallesh, "Dynamic contact behavior of asymmetric spur gear", Materials Today: Proceedings, Vol. 44, pp. 2019-2027, 2021. https://doi.org/10.1016/j.matpr.2020.12.125
dc.relation.referencesen[17] G. Gambirasio, M. Pesenti et al., "Design and Integration of a Low-Back Exoskeleton: A 3D-Printed Cycloidal Drive Actuator for Flexible Human-Robot Interaction", Computer-Aided Design & Applications, Vol. 21(5), pp. 791-806, 2024.
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2021.104430
dc.relation.urihttps://doi.org/10.1016/j.mcm.2011.06.055
dc.relation.urihttps://doi.org/10.1016/j.ijmecsci.2014.05.013
dc.relation.urihttps://doi.org/10.1016/S0168-874X(01)00100-7
dc.relation.urihttps://doi.org/10.1016/j.measurement.2015.12.046
dc.relation.urihttps://doi.org/10.1016/j.mspro.2014.07.159
dc.relation.urihttps://doi.org/10.1016/j.matpr.2021.12.517
dc.relation.urihttps://doi.org/10.1016/j.matpr.2018.02.354
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2020.104219
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2011.01.014
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2012.08.011
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2015.06.003
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2020.103823
dc.relation.urihttps://doi.org/10.1016/j.rineng.2022.100412
dc.relation.urihttps://doi.org/10.1016/j.matpr.2021.06.076
dc.relation.urihttps://doi.org/10.1016/j.matpr.2020.12.125
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Lavrenko I., Sushchenko M., Chaikovska O., 2024
dc.subjectGearbox
dc.subjectstress
dc.subjectstrain
dc.subjectdeformation
dc.subjectvibration
dc.subjectfrequency
dc.subjectcontact
dc.subjectANSYS
dc.titleSimulation of the gears stress-strain state of elbow orthosis planetary gearbox
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n2_Lavrenko_I-Simulation_of_the_gears_33-45.pdf
Size:
816.22 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n2_Lavrenko_I-Simulation_of_the_gears_33-45__COVER.png
Size:
426.62 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: