Effect of Lemna minor population density on bioelectric parameters of electro-biosystems

dc.citation.epage200
dc.citation.issue4
dc.citation.spage195
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorRusyn, Iryna
dc.contributor.authorDyachok, Vasil
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-04T07:45:54Z
dc.date.available2023-05-04T07:45:54Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractThe article presents a study of the influence of Lemna minor population density on the bioelectric potential and current of model electro-biosystems in the laboratory conditions using 500 and 1000 Ω resistors and in the open circuit. The positive effect of increasing the density of duckweed plants populations from 60 to 120 fronds/ml on the growth of bioelectric parameters of model electro-biosystems under load conditions and without resistors was revealed. Increasing the amount of duckweed biomass is a factor of enhancing the efficiency of electro-biosystems based on L. minor.
dc.format.extent195-200
dc.format.pages6
dc.identifier.citationRusyn I. Effect of Lemna minor population density on bioelectric parameters of electro-biosystems / Iryna Rusyn, Vasil Dyachok // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 4. — P. 195–200.
dc.identifier.citationenRusyn I. Effect of Lemna minor population density on bioelectric parameters of electro-biosystems / Iryna Rusyn, Vasil Dyachok // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 4. — P. 195–200.
dc.identifier.doidoi.org/10.23939/ep2021.04.195
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58998
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 4 (6), 2021
dc.relation.referencesAzri, Y. M., Tou, I., Sadi, M. & Benhabyles, L. (2018).
dc.relation.referencesBioelectricity generation from three ornamental plants:
dc.relation.referencesChlorophytum comosum, Chasmanthe floribunda and
dc.relation.referencesPapyrus diffusus. International Journal of Green Energy,15(4), 254–263. doi: https://doi.org/10.1080/15435075.2018.1432487
dc.relation.referencesBerg, G., & Smalla, K. (2009). Plant species and soil type
dc.relation.referencescooperatively shape the structure and function of microbial
dc.relation.referencescommunities in the rhizosphere. FEMS Microbiology
dc.relation.referencesEcology, 68(1), 1–13. doi: https://doi.org/10.1111/j.1574-6941.2009.00654.x
dc.relation.referencesCeschin, S., Abati, S., Ellwood, N. T. W., Zuccarello, V. (2018).
dc.relation.referencesRiding invasion waves: spatial and temporal patterns of the
dc.relation.referencesinvasive Lemna minuta from its arrival to its spread across
dc.relation.referencesEurope. Aquatic Botany, 150, 1–8. doi: https://doi.org/10.1016/j.aquabot.2018.06.002
dc.relation.referencesCeschin, S., Crescenzi, M. & Iannelli, M. A. (2020).
dc.relation.referencesPhytoremediation potential of the duckweeds Lemna minuta
dc.relation.referencesand Lemna minor to remove nutrients from treated waters.
dc.relation.referencesEnvironmental Science and Pollution Research, 27, 15806–15814. doi: https://doi.org/10.1007/s11356-020-08045-3
dc.relation.referencesCheng, J., Landesman, L., Bergmann, B. A., Classen, J. J.,
dc.relation.referencesHoward, J. W., & Yamamoto, Y. T. (2002). Nutrient
dc.relation.referencesremoval from swine lagoon liquid by Lemna minor 8627.
dc.relation.referencesTrans ASAE, 45, 1003–1010.
dc.relation.referencesDeng, H., Chen Z., & Zhao F. (2012). Energy from Plants and
dc.relation.referencesMicroorganisms: Progress in Plant–Microbial Fuel Cells.
dc.relation.referencesСhemSusChem, 5, 1006–1011. doi: https://doi.org/10.1002/cssc.201100257
dc.relation.referencesDeng, H., Cai, L., Jiang, Y., & Zhong, W. (2016). Application
dc.relation.referencesof Microbial Fuel Cells in Reducing Methane Emission
dc.relation.referencesfrom Rice Paddy. Huan Jing Ke Xue, 37 (1), 359–365.
dc.relation.referenceshttps://doi.org/10.13227/j.hjkx.2016.01.046
dc.relation.referencesGubanov, I. A., Kiseleva, K. V., Novikov, V. S., & Tikhomirov,
dc.relation.referencesV. N. (2002). Lemna minor L. - Duckweed small. Illustrated
dc.relation.referencesdeterminant to plants of Middle Russia, Vol 1, Ferns,
dc.relation.referenceshorsetails, moss, gymnosperms, angiosperms (monocotyledons).
dc.relation.referencesMoskva, Tovarishchestvo nauchnykh izdaniy KMK, Institut
dc.relation.referencestekhnologicheskikh issledovaniy.
dc.relation.referencesHelder, M., Strik, D. P., Hamelers, H. V. M., Kuhn, A. J., Blok, C.,
dc.relation.references& Buisman, C. J. N. (2010). Concurrent bio-electricity and
dc.relation.referencesbiomass production in three Plant-Microbial Fuel Cells
dc.relation.referencesusing Spartina anglica, Arundinella anomala and Arundo
dc.relation.referencesdonax. Bioresourсe Technology, 101(10), 3541–3547. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.biortech.2009.12.124
dc.relation.referencesHubenova, Y., & Mitov, M. (2012). Conversion of solar energy
dc.relation.referencesinto electricity by using duckweed in direct photosynthetic
dc.relation.referencesplant fuel cell. Bioelectrochemistry, 87, 185–191. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.bioelechem.2012.02.008
dc.relation.referencesIqbal, J., Javed, A., & Baig, M. A. (2019). Growth and nutrient
dc.relation.referencesremoval efficiency of duckweed (lemna minor) from
dc.relation.referencessynthetic and dumpsite leachate under artificial and
dc.relation.referencesnatural conditions. PLoS One, 14(8), e0221755. doi:
dc.relation.referenceshttps://doi.org/10.1371/journal.pone.0221755
dc.relation.referencesKabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K.
dc.relation.references& Wang, W. (2019). An overview of plant microbial fuel
dc.relation.referencescells (PMFCs): Configurations and applications. Renewable
dc.relation.referencesand Sustainable Energy Reviews, 110 (C), 402-414. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.rser.2019.05.016
dc.relation.referencesKaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008).
dc.relation.referencesPlant/microbe cooperation for electricity generation in a rice
dc.relation.referencespaddy field. Applied Microbiology & Biotechnology, 79(1), 43–49. doi: https://doi.org/10.1007/s00253-008-1410-9
dc.relation.referencesLandolt, E. (1986). Biosystematic investigation on the family
dc.relation.referencesofduckweeds: The family of Lemnaceae. A monograph
dc.relation.referencesstudy. Zurich, Switzerland, Geobotanischen Institute.
dc.relation.referencesNitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells:
dc.relation.referencesA promising biosystems engineering. Renewable and
dc.relation.referencesSustainable Energy Reviews, 76, 81–89. doi: https://doi.org/10.1016/j.rser.2017.03.064
dc.relation.referencesOodally, A., Gulamhussein, M., & Randall, D. G. (2019).
dc.relation.referencesInvestigating the performance of constructed wetland
dc.relation.referencesmicrobial fuel cells using three indigenous South African
dc.relation.referenceswetland plants. Journal of Water Process Engineering, 32, 100930, 1–8. doi: https://doi.org//10.1016/j.jwpe.2019.100930
dc.relation.referencesRusyn, I. B., & Medvediev, O. V. (2016). UA Patent
dc.relation.referencesNo.112093. Ukrainskyi instytut intelektualnoi vlasnosti
dc.relation.references(Ukrpatent).
dc.relation.referencesRusyn, I. B., Vakuliuk, V. V., & Burian, O. V. (2019). Prospects
dc.relation.referencesof use of Caltha palustris in soil plant-microbial ecoelectrical biotechnology. Regulatory Mechanisms in
dc.relation.referencesBiosystems, 10(2), 233–238. doi: https://doi.org/10.15421/021935
dc.relation.referencesSangeetha, T., & Muthukumar, M. (2013). Influence of
dc.relation.referenceselectrode material and electrode distance on bioelectricity
dc.relation.referencesproduction from sago-processing wastewater using
dc.relation.referencesmicrobial fuel cell. Environmental Progress & Sustainable
dc.relation.referencesEnergy, 32 (2), 390–395. doi: https://doi.org/10.1002/ep.11603
dc.relation.referencesStrik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., &
dc.relation.referencesBuisman, C. J. (2008). Green electricity production with
dc.relation.referencesliving plants and bacteria in a fuel cell. International
dc.relation.referencesJournal of Energy Research, 32(9), 870–876. doi:
dc.relation.referenceshttps://doi.org/10.1002/er.1397
dc.relation.referencesTimmers, R. A., Rothballer, M., Strik, D. P. B. T. B., Engel, M.,
dc.relation.referencesSchulz, S., Schloter, M., Hartmann, A., Hamelers, B.,
dc.relation.references& Buisman, C. (2012). Microbial community structure
dc.relation.referenceselucidates performance of Glyceria maxima plant microbial
dc.relation.referencesfuel cell. Applied Microbiology & Biotechnology, 94(2), 537–548. doi: https://doi.org/10.1007/s00253-012-3894-6
dc.relation.referencesTou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & КebboucheGana, S. (2019). Chlorophytum microbial fuel cell
dc.relation.referencescharacterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049
dc.relation.referencesWang, J., Song, X., Wang, Y., Bai, J., Li, M., Dong, G., Lin, F.,
dc.relation.referencesLv, Y., & Yan, D. (2017). Bioenergy generation and
dc.relation.referencesrhizodegradation as affected by microbial community
dc.relation.referencesdistribution in a coupled constructed wetland-microbial fuel
dc.relation.referencescell system associated with three macrophytes. Science
dc.relation.referencesof the Total Environment, 607–608, 53–62. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.scitotenv.2017.06.243
dc.relation.referencesZiegler, P., Adelmann, K., Zimmer, S., Schmidt, C., Appenroth, K. J.
dc.relation.references(2014) Relative in vitro growth rates of duckweeds
dc.relation.references(Lemnaceae) - the most rapidly growing higher plants. Plant
dc.relation.referencesBiol, 17, 33–41. doi: https://doi.org/10.1111/plb.12184
dc.relation.referencesenAzri, Y. M., Tou, I., Sadi, M. & Benhabyles, L. (2018).
dc.relation.referencesenBioelectricity generation from three ornamental plants:
dc.relation.referencesenChlorophytum comosum, Chasmanthe floribunda and
dc.relation.referencesenPapyrus diffusus. International Journal of Green Energy,15(4), 254–263. doi: https://doi.org/10.1080/15435075.2018.1432487
dc.relation.referencesenBerg, G., & Smalla, K. (2009). Plant species and soil type
dc.relation.referencesencooperatively shape the structure and function of microbial
dc.relation.referencesencommunities in the rhizosphere. FEMS Microbiology
dc.relation.referencesenEcology, 68(1), 1–13. doi: https://doi.org/10.1111/j.1574-6941.2009.00654.x
dc.relation.referencesenCeschin, S., Abati, S., Ellwood, N. T. W., Zuccarello, V. (2018).
dc.relation.referencesenRiding invasion waves: spatial and temporal patterns of the
dc.relation.referenceseninvasive Lemna minuta from its arrival to its spread across
dc.relation.referencesenEurope. Aquatic Botany, 150, 1–8. doi: https://doi.org/10.1016/j.aquabot.2018.06.002
dc.relation.referencesenCeschin, S., Crescenzi, M. & Iannelli, M. A. (2020).
dc.relation.referencesenPhytoremediation potential of the duckweeds Lemna minuta
dc.relation.referencesenand Lemna minor to remove nutrients from treated waters.
dc.relation.referencesenEnvironmental Science and Pollution Research, 27, 15806–15814. doi: https://doi.org/10.1007/s11356-020-08045-3
dc.relation.referencesenCheng, J., Landesman, L., Bergmann, B. A., Classen, J. J.,
dc.relation.referencesenHoward, J. W., & Yamamoto, Y. T. (2002). Nutrient
dc.relation.referencesenremoval from swine lagoon liquid by Lemna minor 8627.
dc.relation.referencesenTrans ASAE, 45, 1003–1010.
dc.relation.referencesenDeng, H., Chen Z., & Zhao F. (2012). Energy from Plants and
dc.relation.referencesenMicroorganisms: Progress in Plant–Microbial Fuel Cells.
dc.relation.referencesenShemSusChem, 5, 1006–1011. doi: https://doi.org/10.1002/cssc.201100257
dc.relation.referencesenDeng, H., Cai, L., Jiang, Y., & Zhong, W. (2016). Application
dc.relation.referencesenof Microbial Fuel Cells in Reducing Methane Emission
dc.relation.referencesenfrom Rice Paddy. Huan Jing Ke Xue, 37 (1), 359–365.
dc.relation.referencesenhttps://doi.org/10.13227/j.hjkx.2016.01.046
dc.relation.referencesenGubanov, I. A., Kiseleva, K. V., Novikov, V. S., & Tikhomirov,
dc.relation.referencesenV. N. (2002). Lemna minor L, Duckweed small. Illustrated
dc.relation.referencesendeterminant to plants of Middle Russia, Vol 1, Ferns,
dc.relation.referencesenhorsetails, moss, gymnosperms, angiosperms (monocotyledons).
dc.relation.referencesenMoskva, Tovarishchestvo nauchnykh izdaniy KMK, Institut
dc.relation.referencesentekhnologicheskikh issledovaniy.
dc.relation.referencesenHelder, M., Strik, D. P., Hamelers, H. V. M., Kuhn, A. J., Blok, C.,
dc.relation.referencesen& Buisman, C. J. N. (2010). Concurrent bio-electricity and
dc.relation.referencesenbiomass production in three Plant-Microbial Fuel Cells
dc.relation.referencesenusing Spartina anglica, Arundinella anomala and Arundo
dc.relation.referencesendonax. Bioresourse Technology, 101(10), 3541–3547. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.biortech.2009.12.124
dc.relation.referencesenHubenova, Y., & Mitov, M. (2012). Conversion of solar energy
dc.relation.referenceseninto electricity by using duckweed in direct photosynthetic
dc.relation.referencesenplant fuel cell. Bioelectrochemistry, 87, 185–191. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.bioelechem.2012.02.008
dc.relation.referencesenIqbal, J., Javed, A., & Baig, M. A. (2019). Growth and nutrient
dc.relation.referencesenremoval efficiency of duckweed (lemna minor) from
dc.relation.referencesensynthetic and dumpsite leachate under artificial and
dc.relation.referencesennatural conditions. PLoS One, 14(8), e0221755. doi:
dc.relation.referencesenhttps://doi.org/10.1371/journal.pone.0221755
dc.relation.referencesenKabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K.
dc.relation.referencesen& Wang, W. (2019). An overview of plant microbial fuel
dc.relation.referencesencells (PMFCs): Configurations and applications. Renewable
dc.relation.referencesenand Sustainable Energy Reviews, 110 (C), 402-414. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.rser.2019.05.016
dc.relation.referencesenKaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008).
dc.relation.referencesenPlant/microbe cooperation for electricity generation in a rice
dc.relation.referencesenpaddy field. Applied Microbiology & Biotechnology, 79(1), 43–49. doi: https://doi.org/10.1007/s00253-008-1410-9
dc.relation.referencesenLandolt, E. (1986). Biosystematic investigation on the family
dc.relation.referencesenofduckweeds: The family of Lemnaceae. A monograph
dc.relation.referencesenstudy. Zurich, Switzerland, Geobotanischen Institute.
dc.relation.referencesenNitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells:
dc.relation.referencesenA promising biosystems engineering. Renewable and
dc.relation.referencesenSustainable Energy Reviews, 76, 81–89. doi: https://doi.org/10.1016/j.rser.2017.03.064
dc.relation.referencesenOodally, A., Gulamhussein, M., & Randall, D. G. (2019).
dc.relation.referencesenInvestigating the performance of constructed wetland
dc.relation.referencesenmicrobial fuel cells using three indigenous South African
dc.relation.referencesenwetland plants. Journal of Water Process Engineering, 32, 100930, 1–8. doi: https://doi.org//10.1016/j.jwpe.2019.100930
dc.relation.referencesenRusyn, I. B., & Medvediev, O. V. (2016). UA Patent
dc.relation.referencesenNo.112093. Ukrainskyi instytut intelektualnoi vlasnosti
dc.relation.referencesen(Ukrpatent).
dc.relation.referencesenRusyn, I. B., Vakuliuk, V. V., & Burian, O. V. (2019). Prospects
dc.relation.referencesenof use of Caltha palustris in soil plant-microbial ecoelectrical biotechnology. Regulatory Mechanisms in
dc.relation.referencesenBiosystems, 10(2), 233–238. doi: https://doi.org/10.15421/021935
dc.relation.referencesenSangeetha, T., & Muthukumar, M. (2013). Influence of
dc.relation.referencesenelectrode material and electrode distance on bioelectricity
dc.relation.referencesenproduction from sago-processing wastewater using
dc.relation.referencesenmicrobial fuel cell. Environmental Progress & Sustainable
dc.relation.referencesenEnergy, 32 (2), 390–395. doi: https://doi.org/10.1002/ep.11603
dc.relation.referencesenStrik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., &
dc.relation.referencesenBuisman, C. J. (2008). Green electricity production with
dc.relation.referencesenliving plants and bacteria in a fuel cell. International
dc.relation.referencesenJournal of Energy Research, 32(9), 870–876. doi:
dc.relation.referencesenhttps://doi.org/10.1002/er.1397
dc.relation.referencesenTimmers, R. A., Rothballer, M., Strik, D. P. B. T. B., Engel, M.,
dc.relation.referencesenSchulz, S., Schloter, M., Hartmann, A., Hamelers, B.,
dc.relation.referencesen& Buisman, C. (2012). Microbial community structure
dc.relation.referencesenelucidates performance of Glyceria maxima plant microbial
dc.relation.referencesenfuel cell. Applied Microbiology & Biotechnology, 94(2), 537–548. doi: https://doi.org/10.1007/s00253-012-3894-6
dc.relation.referencesenTou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & KebboucheGana, S. (2019). Chlorophytum microbial fuel cell
dc.relation.referencesencharacterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049
dc.relation.referencesenWang, J., Song, X., Wang, Y., Bai, J., Li, M., Dong, G., Lin, F.,
dc.relation.referencesenLv, Y., & Yan, D. (2017). Bioenergy generation and
dc.relation.referencesenrhizodegradation as affected by microbial community
dc.relation.referencesendistribution in a coupled constructed wetland-microbial fuel
dc.relation.referencesencell system associated with three macrophytes. Science
dc.relation.referencesenof the Total Environment, 607–608, 53–62. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.scitotenv.2017.06.243
dc.relation.referencesenZiegler, P., Adelmann, K., Zimmer, S., Schmidt, C., Appenroth, K. J.
dc.relation.referencesen(2014) Relative in vitro growth rates of duckweeds
dc.relation.referencesen(Lemnaceae) - the most rapidly growing higher plants. Plant
dc.relation.referencesenBiol, 17, 33–41. doi: https://doi.org/10.1111/plb.12184
dc.relation.urihttps://doi.org/10.1080/15435075.2018.1432487
dc.relation.urihttps://doi.org/10.1111/j.1574-6941.2009.00654.x
dc.relation.urihttps://doi.org/10.1016/j.aquabot.2018.06.002
dc.relation.urihttps://doi.org/10.1007/s11356-020-08045-3
dc.relation.urihttps://doi.org/10.1002/cssc.201100257
dc.relation.urihttps://doi.org/10.13227/j.hjkx.2016.01.046
dc.relation.urihttps://doi.org/10.1016/j.biortech.2009.12.124
dc.relation.urihttps://doi.org/10.1016/j.bioelechem.2012.02.008
dc.relation.urihttps://doi.org/10.1371/journal.pone.0221755
dc.relation.urihttps://doi.org/10.1016/j.rser.2019.05.016
dc.relation.urihttps://doi.org/10.1007/s00253-008-1410-9
dc.relation.urihttps://doi.org/10.1016/j.rser.2017.03.064
dc.relation.urihttps://doi.org//10.1016/j.jwpe.2019.100930
dc.relation.urihttps://doi.org/10.15421/021935
dc.relation.urihttps://doi.org/10.1002/ep.11603
dc.relation.urihttps://doi.org/10.1002/er.1397
dc.relation.urihttps://doi.org/10.1007/s00253-012-3894-6
dc.relation.urihttps://doi.org/10.1080/15435075.2019.1650049
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2017.06.243
dc.relation.urihttps://doi.org/10.1111/plb.12184
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Rusyn I., Dyachok V., 2021
dc.subjectrenewable energy
dc.subjectbioelectricity
dc.subjectelectrode
dc.subjectpopulation
dc.subjectelectro-biosystem
dc.subjectplant
dc.titleEffect of Lemna minor population density on bioelectric parameters of electro-biosystems
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v6n4_Rusyn_I-Effect_of_Lemna_minor_population_195-200.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v6n4_Rusyn_I-Effect_of_Lemna_minor_population_195-200__COVER.png
Size:
426.08 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: