Effect of Lemna minor population density on bioelectric parameters of electro-biosystems
dc.citation.epage | 200 | |
dc.citation.issue | 4 | |
dc.citation.spage | 195 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Rusyn, Iryna | |
dc.contributor.author | Dyachok, Vasil | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-05-04T07:45:54Z | |
dc.date.available | 2023-05-04T07:45:54Z | |
dc.date.created | 2021-06-01 | |
dc.date.issued | 2021-06-01 | |
dc.description.abstract | The article presents a study of the influence of Lemna minor population density on the bioelectric potential and current of model electro-biosystems in the laboratory conditions using 500 and 1000 Ω resistors and in the open circuit. The positive effect of increasing the density of duckweed plants populations from 60 to 120 fronds/ml on the growth of bioelectric parameters of model electro-biosystems under load conditions and without resistors was revealed. Increasing the amount of duckweed biomass is a factor of enhancing the efficiency of electro-biosystems based on L. minor. | |
dc.format.extent | 195-200 | |
dc.format.pages | 6 | |
dc.identifier.citation | Rusyn I. Effect of Lemna minor population density on bioelectric parameters of electro-biosystems / Iryna Rusyn, Vasil Dyachok // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 4. — P. 195–200. | |
dc.identifier.citationen | Rusyn I. Effect of Lemna minor population density on bioelectric parameters of electro-biosystems / Iryna Rusyn, Vasil Dyachok // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 4. — P. 195–200. | |
dc.identifier.doi | doi.org/10.23939/ep2021.04.195 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/58998 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Environmental Problems, 4 (6), 2021 | |
dc.relation.references | Azri, Y. M., Tou, I., Sadi, M. & Benhabyles, L. (2018). | |
dc.relation.references | Bioelectricity generation from three ornamental plants: | |
dc.relation.references | Chlorophytum comosum, Chasmanthe floribunda and | |
dc.relation.references | Papyrus diffusus. International Journal of Green Energy,15(4), 254–263. doi: https://doi.org/10.1080/15435075.2018.1432487 | |
dc.relation.references | Berg, G., & Smalla, K. (2009). Plant species and soil type | |
dc.relation.references | cooperatively shape the structure and function of microbial | |
dc.relation.references | communities in the rhizosphere. FEMS Microbiology | |
dc.relation.references | Ecology, 68(1), 1–13. doi: https://doi.org/10.1111/j.1574-6941.2009.00654.x | |
dc.relation.references | Ceschin, S., Abati, S., Ellwood, N. T. W., Zuccarello, V. (2018). | |
dc.relation.references | Riding invasion waves: spatial and temporal patterns of the | |
dc.relation.references | invasive Lemna minuta from its arrival to its spread across | |
dc.relation.references | Europe. Aquatic Botany, 150, 1–8. doi: https://doi.org/10.1016/j.aquabot.2018.06.002 | |
dc.relation.references | Ceschin, S., Crescenzi, M. & Iannelli, M. A. (2020). | |
dc.relation.references | Phytoremediation potential of the duckweeds Lemna minuta | |
dc.relation.references | and Lemna minor to remove nutrients from treated waters. | |
dc.relation.references | Environmental Science and Pollution Research, 27, 15806–15814. doi: https://doi.org/10.1007/s11356-020-08045-3 | |
dc.relation.references | Cheng, J., Landesman, L., Bergmann, B. A., Classen, J. J., | |
dc.relation.references | Howard, J. W., & Yamamoto, Y. T. (2002). Nutrient | |
dc.relation.references | removal from swine lagoon liquid by Lemna minor 8627. | |
dc.relation.references | Trans ASAE, 45, 1003–1010. | |
dc.relation.references | Deng, H., Chen Z., & Zhao F. (2012). Energy from Plants and | |
dc.relation.references | Microorganisms: Progress in Plant–Microbial Fuel Cells. | |
dc.relation.references | СhemSusChem, 5, 1006–1011. doi: https://doi.org/10.1002/cssc.201100257 | |
dc.relation.references | Deng, H., Cai, L., Jiang, Y., & Zhong, W. (2016). Application | |
dc.relation.references | of Microbial Fuel Cells in Reducing Methane Emission | |
dc.relation.references | from Rice Paddy. Huan Jing Ke Xue, 37 (1), 359–365. | |
dc.relation.references | https://doi.org/10.13227/j.hjkx.2016.01.046 | |
dc.relation.references | Gubanov, I. A., Kiseleva, K. V., Novikov, V. S., & Tikhomirov, | |
dc.relation.references | V. N. (2002). Lemna minor L. - Duckweed small. Illustrated | |
dc.relation.references | determinant to plants of Middle Russia, Vol 1, Ferns, | |
dc.relation.references | horsetails, moss, gymnosperms, angiosperms (monocotyledons). | |
dc.relation.references | Moskva, Tovarishchestvo nauchnykh izdaniy KMK, Institut | |
dc.relation.references | tekhnologicheskikh issledovaniy. | |
dc.relation.references | Helder, M., Strik, D. P., Hamelers, H. V. M., Kuhn, A. J., Blok, C., | |
dc.relation.references | & Buisman, C. J. N. (2010). Concurrent bio-electricity and | |
dc.relation.references | biomass production in three Plant-Microbial Fuel Cells | |
dc.relation.references | using Spartina anglica, Arundinella anomala and Arundo | |
dc.relation.references | donax. Bioresourсe Technology, 101(10), 3541–3547. doi: | |
dc.relation.references | https://doi.org/10.1016/j.biortech.2009.12.124 | |
dc.relation.references | Hubenova, Y., & Mitov, M. (2012). Conversion of solar energy | |
dc.relation.references | into electricity by using duckweed in direct photosynthetic | |
dc.relation.references | plant fuel cell. Bioelectrochemistry, 87, 185–191. doi: | |
dc.relation.references | https://doi.org/10.1016/j.bioelechem.2012.02.008 | |
dc.relation.references | Iqbal, J., Javed, A., & Baig, M. A. (2019). Growth and nutrient | |
dc.relation.references | removal efficiency of duckweed (lemna minor) from | |
dc.relation.references | synthetic and dumpsite leachate under artificial and | |
dc.relation.references | natural conditions. PLoS One, 14(8), e0221755. doi: | |
dc.relation.references | https://doi.org/10.1371/journal.pone.0221755 | |
dc.relation.references | Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K. | |
dc.relation.references | & Wang, W. (2019). An overview of plant microbial fuel | |
dc.relation.references | cells (PMFCs): Configurations and applications. Renewable | |
dc.relation.references | and Sustainable Energy Reviews, 110 (C), 402-414. doi: | |
dc.relation.references | https://doi.org/10.1016/j.rser.2019.05.016 | |
dc.relation.references | Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). | |
dc.relation.references | Plant/microbe cooperation for electricity generation in a rice | |
dc.relation.references | paddy field. Applied Microbiology & Biotechnology, 79(1), 43–49. doi: https://doi.org/10.1007/s00253-008-1410-9 | |
dc.relation.references | Landolt, E. (1986). Biosystematic investigation on the family | |
dc.relation.references | ofduckweeds: The family of Lemnaceae. A monograph | |
dc.relation.references | study. Zurich, Switzerland, Geobotanischen Institute. | |
dc.relation.references | Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: | |
dc.relation.references | A promising biosystems engineering. Renewable and | |
dc.relation.references | Sustainable Energy Reviews, 76, 81–89. doi: https://doi.org/10.1016/j.rser.2017.03.064 | |
dc.relation.references | Oodally, A., Gulamhussein, M., & Randall, D. G. (2019). | |
dc.relation.references | Investigating the performance of constructed wetland | |
dc.relation.references | microbial fuel cells using three indigenous South African | |
dc.relation.references | wetland plants. Journal of Water Process Engineering, 32, 100930, 1–8. doi: https://doi.org//10.1016/j.jwpe.2019.100930 | |
dc.relation.references | Rusyn, I. B., & Medvediev, O. V. (2016). UA Patent | |
dc.relation.references | No.112093. Ukrainskyi instytut intelektualnoi vlasnosti | |
dc.relation.references | (Ukrpatent). | |
dc.relation.references | Rusyn, I. B., Vakuliuk, V. V., & Burian, O. V. (2019). Prospects | |
dc.relation.references | of use of Caltha palustris in soil plant-microbial ecoelectrical biotechnology. Regulatory Mechanisms in | |
dc.relation.references | Biosystems, 10(2), 233–238. doi: https://doi.org/10.15421/021935 | |
dc.relation.references | Sangeetha, T., & Muthukumar, M. (2013). Influence of | |
dc.relation.references | electrode material and electrode distance on bioelectricity | |
dc.relation.references | production from sago-processing wastewater using | |
dc.relation.references | microbial fuel cell. Environmental Progress & Sustainable | |
dc.relation.references | Energy, 32 (2), 390–395. doi: https://doi.org/10.1002/ep.11603 | |
dc.relation.references | Strik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., & | |
dc.relation.references | Buisman, C. J. (2008). Green electricity production with | |
dc.relation.references | living plants and bacteria in a fuel cell. International | |
dc.relation.references | Journal of Energy Research, 32(9), 870–876. doi: | |
dc.relation.references | https://doi.org/10.1002/er.1397 | |
dc.relation.references | Timmers, R. A., Rothballer, M., Strik, D. P. B. T. B., Engel, M., | |
dc.relation.references | Schulz, S., Schloter, M., Hartmann, A., Hamelers, B., | |
dc.relation.references | & Buisman, C. (2012). Microbial community structure | |
dc.relation.references | elucidates performance of Glyceria maxima plant microbial | |
dc.relation.references | fuel cell. Applied Microbiology & Biotechnology, 94(2), 537–548. doi: https://doi.org/10.1007/s00253-012-3894-6 | |
dc.relation.references | Tou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & КebboucheGana, S. (2019). Chlorophytum microbial fuel cell | |
dc.relation.references | characterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049 | |
dc.relation.references | Wang, J., Song, X., Wang, Y., Bai, J., Li, M., Dong, G., Lin, F., | |
dc.relation.references | Lv, Y., & Yan, D. (2017). Bioenergy generation and | |
dc.relation.references | rhizodegradation as affected by microbial community | |
dc.relation.references | distribution in a coupled constructed wetland-microbial fuel | |
dc.relation.references | cell system associated with three macrophytes. Science | |
dc.relation.references | of the Total Environment, 607–608, 53–62. doi: | |
dc.relation.references | https://doi.org/10.1016/j.scitotenv.2017.06.243 | |
dc.relation.references | Ziegler, P., Adelmann, K., Zimmer, S., Schmidt, C., Appenroth, K. J. | |
dc.relation.references | (2014) Relative in vitro growth rates of duckweeds | |
dc.relation.references | (Lemnaceae) - the most rapidly growing higher plants. Plant | |
dc.relation.references | Biol, 17, 33–41. doi: https://doi.org/10.1111/plb.12184 | |
dc.relation.referencesen | Azri, Y. M., Tou, I., Sadi, M. & Benhabyles, L. (2018). | |
dc.relation.referencesen | Bioelectricity generation from three ornamental plants: | |
dc.relation.referencesen | Chlorophytum comosum, Chasmanthe floribunda and | |
dc.relation.referencesen | Papyrus diffusus. International Journal of Green Energy,15(4), 254–263. doi: https://doi.org/10.1080/15435075.2018.1432487 | |
dc.relation.referencesen | Berg, G., & Smalla, K. (2009). Plant species and soil type | |
dc.relation.referencesen | cooperatively shape the structure and function of microbial | |
dc.relation.referencesen | communities in the rhizosphere. FEMS Microbiology | |
dc.relation.referencesen | Ecology, 68(1), 1–13. doi: https://doi.org/10.1111/j.1574-6941.2009.00654.x | |
dc.relation.referencesen | Ceschin, S., Abati, S., Ellwood, N. T. W., Zuccarello, V. (2018). | |
dc.relation.referencesen | Riding invasion waves: spatial and temporal patterns of the | |
dc.relation.referencesen | invasive Lemna minuta from its arrival to its spread across | |
dc.relation.referencesen | Europe. Aquatic Botany, 150, 1–8. doi: https://doi.org/10.1016/j.aquabot.2018.06.002 | |
dc.relation.referencesen | Ceschin, S., Crescenzi, M. & Iannelli, M. A. (2020). | |
dc.relation.referencesen | Phytoremediation potential of the duckweeds Lemna minuta | |
dc.relation.referencesen | and Lemna minor to remove nutrients from treated waters. | |
dc.relation.referencesen | Environmental Science and Pollution Research, 27, 15806–15814. doi: https://doi.org/10.1007/s11356-020-08045-3 | |
dc.relation.referencesen | Cheng, J., Landesman, L., Bergmann, B. A., Classen, J. J., | |
dc.relation.referencesen | Howard, J. W., & Yamamoto, Y. T. (2002). Nutrient | |
dc.relation.referencesen | removal from swine lagoon liquid by Lemna minor 8627. | |
dc.relation.referencesen | Trans ASAE, 45, 1003–1010. | |
dc.relation.referencesen | Deng, H., Chen Z., & Zhao F. (2012). Energy from Plants and | |
dc.relation.referencesen | Microorganisms: Progress in Plant–Microbial Fuel Cells. | |
dc.relation.referencesen | ShemSusChem, 5, 1006–1011. doi: https://doi.org/10.1002/cssc.201100257 | |
dc.relation.referencesen | Deng, H., Cai, L., Jiang, Y., & Zhong, W. (2016). Application | |
dc.relation.referencesen | of Microbial Fuel Cells in Reducing Methane Emission | |
dc.relation.referencesen | from Rice Paddy. Huan Jing Ke Xue, 37 (1), 359–365. | |
dc.relation.referencesen | https://doi.org/10.13227/j.hjkx.2016.01.046 | |
dc.relation.referencesen | Gubanov, I. A., Kiseleva, K. V., Novikov, V. S., & Tikhomirov, | |
dc.relation.referencesen | V. N. (2002). Lemna minor L, Duckweed small. Illustrated | |
dc.relation.referencesen | determinant to plants of Middle Russia, Vol 1, Ferns, | |
dc.relation.referencesen | horsetails, moss, gymnosperms, angiosperms (monocotyledons). | |
dc.relation.referencesen | Moskva, Tovarishchestvo nauchnykh izdaniy KMK, Institut | |
dc.relation.referencesen | tekhnologicheskikh issledovaniy. | |
dc.relation.referencesen | Helder, M., Strik, D. P., Hamelers, H. V. M., Kuhn, A. J., Blok, C., | |
dc.relation.referencesen | & Buisman, C. J. N. (2010). Concurrent bio-electricity and | |
dc.relation.referencesen | biomass production in three Plant-Microbial Fuel Cells | |
dc.relation.referencesen | using Spartina anglica, Arundinella anomala and Arundo | |
dc.relation.referencesen | donax. Bioresourse Technology, 101(10), 3541–3547. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/j.biortech.2009.12.124 | |
dc.relation.referencesen | Hubenova, Y., & Mitov, M. (2012). Conversion of solar energy | |
dc.relation.referencesen | into electricity by using duckweed in direct photosynthetic | |
dc.relation.referencesen | plant fuel cell. Bioelectrochemistry, 87, 185–191. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/j.bioelechem.2012.02.008 | |
dc.relation.referencesen | Iqbal, J., Javed, A., & Baig, M. A. (2019). Growth and nutrient | |
dc.relation.referencesen | removal efficiency of duckweed (lemna minor) from | |
dc.relation.referencesen | synthetic and dumpsite leachate under artificial and | |
dc.relation.referencesen | natural conditions. PLoS One, 14(8), e0221755. doi: | |
dc.relation.referencesen | https://doi.org/10.1371/journal.pone.0221755 | |
dc.relation.referencesen | Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K. | |
dc.relation.referencesen | & Wang, W. (2019). An overview of plant microbial fuel | |
dc.relation.referencesen | cells (PMFCs): Configurations and applications. Renewable | |
dc.relation.referencesen | and Sustainable Energy Reviews, 110 (C), 402-414. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/j.rser.2019.05.016 | |
dc.relation.referencesen | Kaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008). | |
dc.relation.referencesen | Plant/microbe cooperation for electricity generation in a rice | |
dc.relation.referencesen | paddy field. Applied Microbiology & Biotechnology, 79(1), 43–49. doi: https://doi.org/10.1007/s00253-008-1410-9 | |
dc.relation.referencesen | Landolt, E. (1986). Biosystematic investigation on the family | |
dc.relation.referencesen | ofduckweeds: The family of Lemnaceae. A monograph | |
dc.relation.referencesen | study. Zurich, Switzerland, Geobotanischen Institute. | |
dc.relation.referencesen | Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: | |
dc.relation.referencesen | A promising biosystems engineering. Renewable and | |
dc.relation.referencesen | Sustainable Energy Reviews, 76, 81–89. doi: https://doi.org/10.1016/j.rser.2017.03.064 | |
dc.relation.referencesen | Oodally, A., Gulamhussein, M., & Randall, D. G. (2019). | |
dc.relation.referencesen | Investigating the performance of constructed wetland | |
dc.relation.referencesen | microbial fuel cells using three indigenous South African | |
dc.relation.referencesen | wetland plants. Journal of Water Process Engineering, 32, 100930, 1–8. doi: https://doi.org//10.1016/j.jwpe.2019.100930 | |
dc.relation.referencesen | Rusyn, I. B., & Medvediev, O. V. (2016). UA Patent | |
dc.relation.referencesen | No.112093. Ukrainskyi instytut intelektualnoi vlasnosti | |
dc.relation.referencesen | (Ukrpatent). | |
dc.relation.referencesen | Rusyn, I. B., Vakuliuk, V. V., & Burian, O. V. (2019). Prospects | |
dc.relation.referencesen | of use of Caltha palustris in soil plant-microbial ecoelectrical biotechnology. Regulatory Mechanisms in | |
dc.relation.referencesen | Biosystems, 10(2), 233–238. doi: https://doi.org/10.15421/021935 | |
dc.relation.referencesen | Sangeetha, T., & Muthukumar, M. (2013). Influence of | |
dc.relation.referencesen | electrode material and electrode distance on bioelectricity | |
dc.relation.referencesen | production from sago-processing wastewater using | |
dc.relation.referencesen | microbial fuel cell. Environmental Progress & Sustainable | |
dc.relation.referencesen | Energy, 32 (2), 390–395. doi: https://doi.org/10.1002/ep.11603 | |
dc.relation.referencesen | Strik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., & | |
dc.relation.referencesen | Buisman, C. J. (2008). Green electricity production with | |
dc.relation.referencesen | living plants and bacteria in a fuel cell. International | |
dc.relation.referencesen | Journal of Energy Research, 32(9), 870–876. doi: | |
dc.relation.referencesen | https://doi.org/10.1002/er.1397 | |
dc.relation.referencesen | Timmers, R. A., Rothballer, M., Strik, D. P. B. T. B., Engel, M., | |
dc.relation.referencesen | Schulz, S., Schloter, M., Hartmann, A., Hamelers, B., | |
dc.relation.referencesen | & Buisman, C. (2012). Microbial community structure | |
dc.relation.referencesen | elucidates performance of Glyceria maxima plant microbial | |
dc.relation.referencesen | fuel cell. Applied Microbiology & Biotechnology, 94(2), 537–548. doi: https://doi.org/10.1007/s00253-012-3894-6 | |
dc.relation.referencesen | Tou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & KebboucheGana, S. (2019). Chlorophytum microbial fuel cell | |
dc.relation.referencesen | characterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049 | |
dc.relation.referencesen | Wang, J., Song, X., Wang, Y., Bai, J., Li, M., Dong, G., Lin, F., | |
dc.relation.referencesen | Lv, Y., & Yan, D. (2017). Bioenergy generation and | |
dc.relation.referencesen | rhizodegradation as affected by microbial community | |
dc.relation.referencesen | distribution in a coupled constructed wetland-microbial fuel | |
dc.relation.referencesen | cell system associated with three macrophytes. Science | |
dc.relation.referencesen | of the Total Environment, 607–608, 53–62. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/j.scitotenv.2017.06.243 | |
dc.relation.referencesen | Ziegler, P., Adelmann, K., Zimmer, S., Schmidt, C., Appenroth, K. J. | |
dc.relation.referencesen | (2014) Relative in vitro growth rates of duckweeds | |
dc.relation.referencesen | (Lemnaceae) - the most rapidly growing higher plants. Plant | |
dc.relation.referencesen | Biol, 17, 33–41. doi: https://doi.org/10.1111/plb.12184 | |
dc.relation.uri | https://doi.org/10.1080/15435075.2018.1432487 | |
dc.relation.uri | https://doi.org/10.1111/j.1574-6941.2009.00654.x | |
dc.relation.uri | https://doi.org/10.1016/j.aquabot.2018.06.002 | |
dc.relation.uri | https://doi.org/10.1007/s11356-020-08045-3 | |
dc.relation.uri | https://doi.org/10.1002/cssc.201100257 | |
dc.relation.uri | https://doi.org/10.13227/j.hjkx.2016.01.046 | |
dc.relation.uri | https://doi.org/10.1016/j.biortech.2009.12.124 | |
dc.relation.uri | https://doi.org/10.1016/j.bioelechem.2012.02.008 | |
dc.relation.uri | https://doi.org/10.1371/journal.pone.0221755 | |
dc.relation.uri | https://doi.org/10.1016/j.rser.2019.05.016 | |
dc.relation.uri | https://doi.org/10.1007/s00253-008-1410-9 | |
dc.relation.uri | https://doi.org/10.1016/j.rser.2017.03.064 | |
dc.relation.uri | https://doi.org//10.1016/j.jwpe.2019.100930 | |
dc.relation.uri | https://doi.org/10.15421/021935 | |
dc.relation.uri | https://doi.org/10.1002/ep.11603 | |
dc.relation.uri | https://doi.org/10.1002/er.1397 | |
dc.relation.uri | https://doi.org/10.1007/s00253-012-3894-6 | |
dc.relation.uri | https://doi.org/10.1080/15435075.2019.1650049 | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2017.06.243 | |
dc.relation.uri | https://doi.org/10.1111/plb.12184 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Rusyn I., Dyachok V., 2021 | |
dc.subject | renewable energy | |
dc.subject | bioelectricity | |
dc.subject | electrode | |
dc.subject | population | |
dc.subject | electro-biosystem | |
dc.subject | plant | |
dc.title | Effect of Lemna minor population density on bioelectric parameters of electro-biosystems | |
dc.type | Article |
Files
License bundle
1 - 1 of 1