Synthesis of thiosulphonate and amino acid derivatives of benzochinone and predicted screening of their biological activity

dc.citation.epage46
dc.citation.issue2
dc.citation.spage40
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМонька, Н. Я.
dc.contributor.authorЖурахівська, Л. Р.
dc.contributor.authorКурка, М. С.
dc.contributor.authorШиян, Г. Б.
dc.contributor.authorСеменчук, Ю. М.
dc.contributor.authorЛубенець, В. І.
dc.contributor.authorMonka, N. Ya.
dc.contributor.authorZhurakhivska, L. R.
dc.contributor.authorKurka, M. S.
dc.contributor.authorShyian, H. B.
dc.contributor.authorSemenchuk, Yu. M.
dc.contributor.authorLubenets, V. I.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:47:19Z
dc.date.available2024-01-22T08:47:19Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractПохідні хіноїдного ряду приваблюють, не лише як цікаві синтони для синтезу, а також як потенційні біологічно активні речовини, тому актуальним є модифікація сполук хінонового ряду різними фармакоформними фрагментами. Проведено структурний дизайн хлор- та броманілу дисульфуровмісними фрагментами, а саме тіосульфонатними, та хлоранілу – фрагментом 4- амінобутанової кислоти. Розроблено методики синтезу та досліджено фізико-хімічні характеристики тіосульфонатних та амінокислотних похідних: 2,5-біс(тіосульфонатних)-3,6-галоген-1,4-бензохінонів та 2,5-біс(3-карбоксипропіламіно)-3,6-дихлорбензохінону. Перспективність дизайну хлор- та броманілу тіосульфонатними фрагментами та хлоранілу фрагментом 4-амінобутанової кислоти підтверджена результатами прогнозування біологічної активності 5 а, b, 6 а, b, 7 з використанням онлайн-ресурсу PASS Online. Зокрема субстанція 5b, яку одержали, є перспективною для досліджень на Antiviral (Picornavirus). Одержані результати прогнозованого скринінгу цитотоксичності свідчать про доцільність проведення експериментальних досліджень методами in vitro на протиракові активності стосовно лінії ракових клітин гематопоїдної і лімфоїдної тканини, легень, шкіри, яєчників, крові, молочної залози, нирок, товстої кишки, головного мозку.
dc.description.abstractQuinoid derivatives are attractive not only as interesting synthons for synthesis, but also as potential biologically active substances, so it is important to modify the compounds of the quinone series with different pharmacoform fragments. In this work, the structural design of chlorine and bromanyl disulfur-containing fragments, namely thiosulfonate, and chloranyl – a fragment of 4-aminobutanoic acid. Methods of synthesis were developed and physicochemical characteristics of thiosulfonate and amino acid derivatives were studied: 2,5-bis (thiosulfonate) -3,6-halogen -1,4-benzoquinones and 2,5-bis (3-carboxypropylamino) -3,6 – dichlorobenzoquinone. The prospects for the design of chlorine and bromanyl thiosulfonate fragments and chloranyl fragment of 4-aminobutanoic acid are confirmed by the results of predicting the biological activity of 5 a, b, 6 a, b, 7 using the online resource PASS Online. In particular, the substance 6a obtained by us is promising in terms of research on Antiviral (Picornavirus). The obtained results of predicted cytotoxicity screening indicate the feasibility of conducting experimental studies by in vitro methods on anticancer activity against cancer cell lines of hematopoietic and lymphoid tissue, lungs, skin, ovaries, blood, breast, kidney, colon, brain.
dc.format.extent40-46
dc.format.pages7
dc.identifier.citationSynthesis of thiosulphonate and amino acid derivatives of benzochinone and predicted screening of their biological activity / N. Ya. Monka, L. R. Zhurakhivska, M. S. Kurka, H. B. Shyian, Yu. M. Semenchuk, V. I. Lubenets // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 40–46.
dc.identifier.citationenSynthesis of thiosulphonate and amino acid derivatives of benzochinone and predicted screening of their biological activity / N. Ya. Monka, L. R. Zhurakhivska, M. S. Kurka, H. B. Shyian, Yu. M. Semenchuk, V. I. Lubenets // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 40–46.
dc.identifier.doidoi.org/10.23939/ctas2021.02.040
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60906
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (4), 2021
dc.relation.references1. K. P. Medvedeva, A. O. Donchenko, S. O. Vasyuk. (2019). Zastosuvannya pohіdnih hіnonu dlya spektrofotometrichnogo viznachennya lіkars'kih zasobіv. Aktual'nі pitannya farmacevtichnoi і medichnoi nauki ta praktiki. Т. 12, No3(31), 250–255 DOI: 10.14739/2409-2932.2019.3.184173 [Ukraine]
dc.relation.references2. Donchenko A. O., Vasyuk S. O., Portna K. P. (2015). Vikoristannya 2,3-dihlor-1,4-naftohіnonu dlya spektrofotometrichnogo viznachennya acetilcisteїnu v lіkars'kih preparatah. Aktual'nі pitannya farmacevtichnoї і medichnoї nauki ta praktiki. No 1. С. 36-39. https://doi.org/10.14739/2409-2932.2015.1.41374 [Ukraine]
dc.relation.references3. Rani M. E. (2014). Spectrophotometric determination of cefadroxil with 2,3 – dichloro-5,6 dicyano-1, 4-benzoquinone. World Journal of Pharmaceutical Research. Vol. 3. Issue 9. Р. 1196-1200
dc.relation.references4. Sheikh R., Amin A., Gouda A., Zahran D. (2017). Validated spectrophotometric methods for determination of cefdinir in pure and dosage forms through charge transfer complexation using alizarin derivatives. International Journal of Research in Pharmacy and Pharmaceutical Sciences. Vol. 2. Issue 6. Р. 11-18
dc.relation.references5. Ali Ahmed S., Elbashir A., Aboul-Enein H. (2015). New spectrophotometric method for determination of cephalosporins in pharmaceutical formulations. Arabian Journal Of Chemistry. Vol. 8. Issue 2. P. 233-239. doi: 10.1016/j.arabjc.2011.08.012
dc.relation.references6. Kumari N. A., Vasundhara A. (2016). A noval method development for spectrophotometric determination of ertapenem in bulk and injection formulations by NQS. International Journal of Science Technology and Management. Vol. 5. Is. 1. P. 1–9.
dc.relation.references7. Omar M., Hammad M., Eltoukhi W. (2017). Spectrophotometric Determination of Certain Antimigraine Drugs in Pharmaceutical Formulations Using p-Chloranil Reagent; Application to Content Uniformity Testing. Analytical Chemistry Letters. Vol. 7. Issue 5. P. 611–622.
dc.relation.references8. Sotirova A, Avramova T, Stoitsova S, Lazarkevich I, Lubenets V, Karpenko E, Galabova D. (2012). The importance of rhamnolipid-biosurfactantinduced changes in bacterial membrane lipids of Bacillus subtilis for the antimicrobial activity of thiosulfonates. Curr. Microbiol. № 65(5): 534–541
dc.relation.references9. E. Mochizuki, H. Nakazawa. (1995). Sulfur Components of Garlic and Garlic Preparations and their Biological Activities. Foods & Food Ingredients Journal of Japan. No. 164. P. 36–45.
dc.relation.references10. M. J. Peinado, R. Ruiz, A. Echavarri, and L. A. Rubio. (2012). Garlic derivative propyl propane thiosulfonate is effective against broiler enteropathogens in vivo. Poultry Science. Vol. 91. Р. 2148–2157
dc.relation.references11. A. Mital, V. S. Negi and U. Ramachandran. (2008). Synthesis and Biological Evaluation of Naphthalene-1,4-dione Derivatives as Potent Antimycobacterial Agents. Medicinal Chemistry. № 4, 492–497.
dc.relation.references12. V. Dziuba, O. Kuchmenko. (2017). Suchasni uiavlennia pro rol ubikhinonu v protsesakh metabolizmu klityny. Visnyk Lvivskoho universytetu. Seriia biolohichna. V. 75. С. 3–13 [Ukraine]
dc.relation.references13. Kolesnikov V. T. Vid L. V. Kuzmenko L. O. (1982). 1-benzenesulfonylsulfany-l-4 nitrobenzene Hurnal organicheskoy khimii 18.2163. (in Russian).
dc.relation.references14. L. Kuz'menko, A. Avdeenko, S. Konovalova, S. Vasylyuk, O. Fedorova, N. Monka, A. Krychkovska,V. Lubenets. (2019). Synthesis and study of pesticidal activity of some N-arylthio-1,4-benzoquinone imines. Biointerface Research in Applied Chemistry. Vol. 9, Is. 5, 4232–4238. https://doi.org/10.33263/BRIAC95.232238
dc.relation.references15. Vasylyuk, S.; Komarovska-Porokhnyavets, O.; Novikov, V.; Lubenets, V. (2018). Modification of Alkyl Esters of 4- Aminobenzenethiosulfonic Acid by s-Triazine Fragment and Investigation of their Growth-Regulative Activity. Chemistry and Chemical Technology 12, 24, https://doi.org/10.23939/chcht12.01.024.
dc.relation.references16. Lubenets, V.; Vasylyuk, S.; Monka, N.; Bolibrukh, K.; Komarovska-Porokhnyavets, O.; Baranovych, D.; Musyanovych, R.;. Zaczynska, E.; Czarny, A.; Nawrot, U.; Novikov, V. (2017). Synthesis and antimicrobial properties of 4-acylaminobenzenethiosulfoacid S-esters. Saudi Pharmaceutical Journal 25, 266, https://doi.org/10.1016/j.jsps.2016.06.007.
dc.relation.references17. Núñez L. C., Arjona A.B., A.E. Guillamón, López A. V., Ma (2018). Concepción Navarro Moll, Ana Sanz Rus Use of propyl propane thiosulfinate and propyl propane thiosulfonate for the prevention and reduction of parasites in aquatic animals Patent No.: US 2018/0014538 А1, Date of Patent: Jan. 18,
dc.relation.references18. Santos dos, Edson dos A. Goncalves F. Prado P. C. Sasaki D. Y. Lima D.P.; M. L. (2012). Rodrigues Synthesis method for thiosulfonate and report of its insecticidal activity in Anagasta kuehniella (Lepidoptera: Pyralidae) International Journal of Molecular Sciences. 13, 15241
dc.relation.references19. Lubenets V. I., Havryliak V. V., Pylypets A. Z., Nakonechna A. V. (2018). Changes in the spectrum of proteins and phospholipids in tissues of rats exposed to thiosulfanilates. Regulatory mechanisms in biosystems 9,4,52
dc.relation.references20. Pylypets A. Z., Iskra R. Ya, Havryliak V. V, Nakonechna A. V, Novikov V. P, Lubenets V. I. (2017). Effects of thiosulfonates on the lipid composition of rat tissues. Ukr. Biochem J. 89,6,56.
dc.relation.references21. T. A. Gloriozova, D. A. Filimonov, A. A. Lagunin, V. V. Poroykov (1998) Testirovaniye komp'yuternoy sistemy dlya predskazaniya biologicheskoy aktivnosti PASS na vyborke novykh khimicheskikh soyedineniy. Khim.-farm. zhurnal. 32(12), 32–39. [in Russian]
dc.relation.references22. A. Lagunin, A. Stepanchikova, D. Filimonov, V. Poroikov (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics. 16 (8), 747–748.
dc.relation.references23. Lagunin A. A., Dubovskaja V. I., Rudik A. V., Pogodin P. V., Druzhilovskiy D. S., Gloriozova T. A., Filimonov D. A., Sastry G. N., Poroikov V. V. (2018). CLC-Pred: a freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLOS One, 13 (1), e0191838. DOI: 10.1371/journal.pone.0191838
dc.relation.references24. Pylypets A. Z., Iskra R. Y., Havryliak V. V., Nakonechna A. V., Novikov V. P. Lubenets, V., (2017). Effects of thiosulfonates on the lipid composition of rat tissues. Ukr. Biochem. J., Vol. 89, № 6, 56–62 doi: https://doi.org/10.15407/ubj89.06.056
dc.relation.references25. Oriabinska L. B., Starovoitova S. О., Vasylyuk S. V., Novikov V. P. (2017). Ethylthiosulfanilate effect on Candida tropicalis. Ukr. Biochem. J., Vol. 89, № 5 70–76 doi: https://doi.org/10.15407/ubj89.05.070
dc.relation.referencesen1. K. P. Medvedeva, A. O. Donchenko, S. O. Vasyuk. (2019). Zastosuvannya pohidnih hinonu dlya spektrofotometrichnogo viznachennya likars'kih zasobiv. Aktual'ni pitannya farmacevtichnoi i medichnoi nauki ta praktiki. V. 12, No3(31), 250–255 DOI: 10.14739/2409-2932.2019.3.184173 [Ukraine]
dc.relation.referencesen2. Donchenko A. O., Vasyuk S. O., Portna K. P. (2015). Vikoristannya 2,3-dihlor-1,4-naftohinonu dlya spektrofotometrichnogo viznachennya acetilcisteinu v likars'kih preparatah. Aktual'ni pitannya farmacevtichnoi i medichnoi nauki ta praktiki. No 1. P. 36-39. https://doi.org/10.14739/2409-2932.2015.1.41374 [Ukraine]
dc.relation.referencesen3. Rani M. E. (2014). Spectrophotometric determination of cefadroxil with 2,3 – dichloro-5,6 dicyano-1, 4-benzoquinone. World Journal of Pharmaceutical Research. Vol. 3. Issue 9. R. 1196-1200
dc.relation.referencesen4. Sheikh R., Amin A., Gouda A., Zahran D. (2017). Validated spectrophotometric methods for determination of cefdinir in pure and dosage forms through charge transfer complexation using alizarin derivatives. International Journal of Research in Pharmacy and Pharmaceutical Sciences. Vol. 2. Issue 6. R. 11-18
dc.relation.referencesen5. Ali Ahmed S., Elbashir A., Aboul-Enein H. (2015). New spectrophotometric method for determination of cephalosporins in pharmaceutical formulations. Arabian Journal Of Chemistry. Vol. 8. Issue 2. P. 233-239. doi: 10.1016/j.arabjc.2011.08.012
dc.relation.referencesen6. Kumari N. A., Vasundhara A. (2016). A noval method development for spectrophotometric determination of ertapenem in bulk and injection formulations by NQS. International Journal of Science Technology and Management. Vol. 5. Is. 1. P. 1–9.
dc.relation.referencesen7. Omar M., Hammad M., Eltoukhi W. (2017). Spectrophotometric Determination of Certain Antimigraine Drugs in Pharmaceutical Formulations Using p-Chloranil Reagent; Application to Content Uniformity Testing. Analytical Chemistry Letters. Vol. 7. Issue 5. P. 611–622.
dc.relation.referencesen8. Sotirova A, Avramova T, Stoitsova S, Lazarkevich I, Lubenets V, Karpenko E, Galabova D. (2012). The importance of rhamnolipid-biosurfactantinduced changes in bacterial membrane lipids of Bacillus subtilis for the antimicrobial activity of thiosulfonates. Curr. Microbiol. No 65(5): 534–541
dc.relation.referencesen9. E. Mochizuki, H. Nakazawa. (1995). Sulfur Components of Garlic and Garlic Preparations and their Biological Activities. Foods & Food Ingredients Journal of Japan. No. 164. P. 36–45.
dc.relation.referencesen10. M. J. Peinado, R. Ruiz, A. Echavarri, and L. A. Rubio. (2012). Garlic derivative propyl propane thiosulfonate is effective against broiler enteropathogens in vivo. Poultry Science. Vol. 91. R. 2148–2157
dc.relation.referencesen11. A. Mital, V. S. Negi and U. Ramachandran. (2008). Synthesis and Biological Evaluation of Naphthalene-1,4-dione Derivatives as Potent Antimycobacterial Agents. Medicinal Chemistry. No 4, 492–497.
dc.relation.referencesen12. V. Dziuba, O. Kuchmenko. (2017). Suchasni uiavlennia pro rol ubikhinonu v protsesakh metabolizmu klityny. Visnyk Lvivskoho universytetu. Seriia biolohichna. V. 75. P. 3–13 [Ukraine]
dc.relation.referencesen13. Kolesnikov V. T. Vid L. V. Kuzmenko L. O. (1982). 1-benzenesulfonylsulfany-l-4 nitrobenzene Hurnal organicheskoy khimii 18.2163. (in Russian).
dc.relation.referencesen14. L. Kuz'menko, A. Avdeenko, S. Konovalova, S. Vasylyuk, O. Fedorova, N. Monka, A. Krychkovska,V. Lubenets. (2019). Synthesis and study of pesticidal activity of some N-arylthio-1,4-benzoquinone imines. Biointerface Research in Applied Chemistry. Vol. 9, Is. 5, 4232–4238. https://doi.org/10.33263/BRIAC95.232238
dc.relation.referencesen15. Vasylyuk, S.; Komarovska-Porokhnyavets, O.; Novikov, V.; Lubenets, V. (2018). Modification of Alkyl Esters of 4- Aminobenzenethiosulfonic Acid by s-Triazine Fragment and Investigation of their Growth-Regulative Activity. Chemistry and Chemical Technology 12, 24, https://doi.org/10.23939/chcht12.01.024.
dc.relation.referencesen16. Lubenets, V.; Vasylyuk, S.; Monka, N.; Bolibrukh, K.; Komarovska-Porokhnyavets, O.; Baranovych, D.; Musyanovych, R.;. Zaczynska, E.; Czarny, A.; Nawrot, U.; Novikov, V. (2017). Synthesis and antimicrobial properties of 4-acylaminobenzenethiosulfoacid S-esters. Saudi Pharmaceutical Journal 25, 266, https://doi.org/10.1016/j.jsps.2016.06.007.
dc.relation.referencesen17. Núñez L. C., Arjona A.B., A.E. Guillamón, López A. V., Ma (2018). Concepción Navarro Moll, Ana Sanz Rus Use of propyl propane thiosulfinate and propyl propane thiosulfonate for the prevention and reduction of parasites in aquatic animals Patent No., US 2018/0014538 A1, Date of Patent: Jan. 18,
dc.relation.referencesen18. Santos dos, Edson dos A. Goncalves F. Prado P. C. Sasaki D. Y. Lima D.P.; M. L. (2012). Rodrigues Synthesis method for thiosulfonate and report of its insecticidal activity in Anagasta kuehniella (Lepidoptera: Pyralidae) International Journal of Molecular Sciences. 13, 15241
dc.relation.referencesen19. Lubenets V. I., Havryliak V. V., Pylypets A. Z., Nakonechna A. V. (2018). Changes in the spectrum of proteins and phospholipids in tissues of rats exposed to thiosulfanilates. Regulatory mechanisms in biosystems 9,4,52
dc.relation.referencesen20. Pylypets A. Z., Iskra R. Ya, Havryliak V. V, Nakonechna A. V, Novikov V. P, Lubenets V. I. (2017). Effects of thiosulfonates on the lipid composition of rat tissues. Ukr. Biochem J. 89,6,56.
dc.relation.referencesen21. T. A. Gloriozova, D. A. Filimonov, A. A. Lagunin, V. V. Poroykov (1998) Testirovaniye komp'yuternoy sistemy dlya predskazaniya biologicheskoy aktivnosti PASS na vyborke novykh khimicheskikh soyedineniy. Khim.-farm. zhurnal. 32(12), 32–39. [in Russian]
dc.relation.referencesen22. A. Lagunin, A. Stepanchikova, D. Filimonov, V. Poroikov (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics. 16 (8), 747–748.
dc.relation.referencesen23. Lagunin A. A., Dubovskaja V. I., Rudik A. V., Pogodin P. V., Druzhilovskiy D. S., Gloriozova T. A., Filimonov D. A., Sastry G. N., Poroikov V. V. (2018). CLC-Pred: a freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLOS One, 13 (1), e0191838. DOI: 10.1371/journal.pone.0191838
dc.relation.referencesen24. Pylypets A. Z., Iskra R. Y., Havryliak V. V., Nakonechna A. V., Novikov V. P. Lubenets, V., (2017). Effects of thiosulfonates on the lipid composition of rat tissues. Ukr. Biochem. J., Vol. 89, No 6, 56–62 doi: https://doi.org/10.15407/ubj89.06.056
dc.relation.referencesen25. Oriabinska L. B., Starovoitova S. O., Vasylyuk S. V., Novikov V. P. (2017). Ethylthiosulfanilate effect on Candida tropicalis. Ukr. Biochem. J., Vol. 89, No 5 70–76 doi: https://doi.org/10.15407/ubj89.05.070
dc.relation.urihttps://doi.org/10.14739/2409-2932.2015.1.41374
dc.relation.urihttps://doi.org/10.33263/BRIAC95.232238
dc.relation.urihttps://doi.org/10.23939/chcht12.01.024
dc.relation.urihttps://doi.org/10.1016/j.jsps.2016.06.007
dc.relation.urihttps://doi.org/10.15407/ubj89.06.056
dc.relation.urihttps://doi.org/10.15407/ubj89.05.070
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectбензохінон
dc.subjectхлораніл
dc.subjectброманіл
dc.subjectтіосульфонат
dc.subjectпрогнозована активність
dc.subjectцитотоксичніть
dc.subjectbenzoquinone
dc.subjectchloranyl
dc.subjectbromanyl
dc.subjectthiosulfonate
dc.subjectpredicted activity
dc.subjectcytotoxicity
dc.titleSynthesis of thiosulphonate and amino acid derivatives of benzochinone and predicted screening of their biological activity
dc.title.alternativeСинтез тіосульфонатних та амінокислотних похідних бензохінону та прогнозований скринінг їх біологічної активності
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n2_Monka_N_Ya-Synthesis_of_thiosulphonate_40-46.pdf
Size:
594.64 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n2_Monka_N_Ya-Synthesis_of_thiosulphonate_40-46__COVER.png
Size:
459.6 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.96 KB
Format:
Plain Text
Description: