Capacity increasing of arterial streets with controlled motion
dc.citation.epage | 38 | |
dc.citation.issue | 1 | |
dc.citation.spage | 25 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Hrytsun, Oleh | |
dc.contributor.author | Bura, Romana | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2021-12-21T11:11:50Z | |
dc.date.available | 2021-12-21T11:11:50Z | |
dc.date.created | 2021-03-10 | |
dc.date.issued | 2021-03-10 | |
dc.description.abstract | Розглянуто проблему підвищення пропускної здатності магістральних вулиць із регульованим рухом. Вибрано прогони вулично-дорожньої мережі міста Львова за різної довжини і ширини проїзної частини, зокрема з найнасиченішим дорожнім рухом. Проаналізовано методи підвищення пропускної здатності магістральних вулиць регульованого руху, а також чинники, які впливають на зниження пропускної здатності. Розраховано пропускну здатність перехресть за різного рівня їх завантаження. Побудовано розподіл середньої швидкості руху для прогонів різної довжини. Встановлено, що на прогонах середньої довжини між регульованими перехрестями і високим коефіцієнтом їх завантаження швидкість транспортного потоку не досягає максимальних значень. Підвищити швидкість і пропускну здатність прогонів можливо у разі збільшення їх довжини, достатньої для розгону потоку до максимальної сталої швидкості й подальшого гальмування перед перехрестям. Для визначення рекомендованої швидкості руху на магістральних напрямках враховано дорожні умови, які формуються у разі одночасного впливу декількох чинників: рівня завантаження перехрестя у зоні гальмування, рівня завантаження перехрестя в зоні розгону, кількості смуг руху, довжини прогону і середньої швидкості транспортного потоку. Визначено, що середня швидкість транспортного потоку на коротких прогонах (довжина до 300 м) становить 27–33 км/год, на прогонах середньої довжини – 35– 38 км/год. Така швидкість дасть змогу транспортному потоку потрапляти в смугу невпинного руху в заданих дорожніх умовах. Виконані дослідження повніше враховують дорожньо-транспортні умови під час обґрунтування розрахункової швидкості транспортного потоку. В результаті цього підвищується пропускна здатність магістральних вулиць регульованого руху. | |
dc.description.abstract | The problem of capacity increasing of arterial streets with controlled motion is investigated in this paper. For investigation, sections between intersections on the road network of Lviv city were chosen at their different length and roadway width with most saturated traffic. Methods of capacity increasing of arterial streets with controlled motion and factors that have impact on the capacity reduction are analyzed. Capacity of intersections at different volumecapacity ratios is determined. The distribution of average speed for sections between intersections of different length is built. It is established that on sections of medium length between signalized intersections and the high volume-capacity ratio, the speed of traffic flow does not reach maximum values. It is possible to increase the speed and the capacity of sections between intersections by increasing their length, sufficient for flow acceleration to the maximal constant speed and further braking before the intersection. To determinate the recommended speed of movement on arterial directions, road conditions are taken into account, which are formed with simultaneous impact of several factors: volume-capacity ratio of intersection in braking zone, volume-capacity ratio of intersection in acceleration zone, the number of lanes, the length of the section between intersections and the average speed of the traffic flow. It is determined that the average speed of traffic flow on short sections between intersections (the length less than 300 m) is 27–33 km/h, on sections of medium length – 35–38 km/h/ Such speed will allow to traffic flow reaching the line of constant movement in given road conditions. Conducted research allows taking into account road traffic conditions while justifying the calculating speed of traffic flow, in result of which capacity of arterial streets of controlled motion increases. | |
dc.format.extent | 25-38 | |
dc.format.pages | 14 | |
dc.identifier.citation | Hrytsun O. Capacity increasing of arterial streets with controlled motion / Oleh Hrytsun, Romana Bura // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 2. — No 1. — P. 25–38. | |
dc.identifier.citationen | Hrytsun O. Capacity increasing of arterial streets with controlled motion / Oleh Hrytsun, Romana Bura // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 2. — No 1. — P. 25–38. | |
dc.identifier.doi | doi.org/ 10.23939/tt2021.01.025 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/56537 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Transport Technologies, 1 (2), 2021 | |
dc.relation.references | 1. W Hua, X., Wang, W., Wang, Y. & Pu, Z. (2017). Optimizing Phase Compression for Transit Signal Priority at Isolated Intersections. Intersections. Transport, 32(4), 386–397 (in English). | |
dc.relation.references | 2. Kellney, B. & Hidayati, I. (2016). Capacity reserves investigations – case studies from Cairo and Yogyakarta. Transportation Research Record, 438–447 (in English). | |
dc.relation.references | 3. Oskarbski, J., Guminska, L., Miszewski, M. & Oskarbska, I. (2016) Analysis of signalized intersections in the context of pedestrian traffic. Transportation Research Procedia, 14. 2138–2147 (in English). | |
dc.relation.references | 4. Houten, V., Malenfant, L. & Huitemad, D. (2018). Highvisibility enforcement on driver compliance with pedestrian right-of-way laws: 4-year follow-up. Transportation Research Record: Journal of the Transportation Research Board, vol. 2660, no. 1, pp. 58–65 (in English). | |
dc.relation.references | 5. Gong, Q., Liang, X. & Xu, M. (2019). Pedestrian violations crossing behavior at signal intersections: A case study in Anning District of Lanzhou. OP Conf. Series: Materials Science and Engineering, 688, 1–9 (in English). | |
dc.relation.references | 6. Fadyushin, A., Zaharov, D. & Karmanov, D. (2018). Estimation of the change in the parameters of traffic in the organization of the bus lane. Transportation Research Procedia, 36, 166-172 (in English). | |
dc.relation.references | 7. Stapleton, S., Kirsch, T. & Gates, T. (2018). Factors affecting driver yielding compliance at uncontrolled midblock crosswalks on low-speed roadways. Transportation Research Record: Journal of the Transportation Research Board, vol. 2661, no. 1, pp. 95–102 (in English). | |
dc.relation.references | 8. Yang, C., Wang, J. & Dong, J. (2020). Capacity Model of Exclusive Right-Turn Lane at Signalized Intersection considering Pedestrian-Vehicle Interaction. Journal of Advanced Transportation, 1-19 (in English). | |
dc.relation.references | 9. Ben-Dor, G., Ben-Elia, E. & Beneson, I. (2018). Assessing the Impacts of Dedicated Bus Lanes on Urban Traffic Congestion and Modal Split with an Agent-Based Model. Procedia Computer Science, 130, 824-829 (in English). | |
dc.relation.references | 10. Bourquin, A., Emerson, W., Sauerburger, D. & Barlow, M. (2018). Conditions that influence drivers’ behaviors at roundabouts: increasing yielding for pedestrians who are visually impaired. Journal of Visual Impairment & Blindness, vol. 112, no. 1, pp. 61–71 (in English). | |
dc.relation.references | 11. Gitelman, V., Korchatov, A. & Elias, W. (2020). An Examination of the Safety Impacts of Bus Priority Routes in Major Israeli Cities. Sustainability, 12, 1–17 (in English). | |
dc.relation.references | 12. Ma, Y., Lu, S. & Zhang, Y. (2020). Analysis on Illegal Crossing Behavior of Pedestrians at Signalized Intersections Based on Bayesian Network. Journal of Advanced Transportation, 2020, 1–14 (in English). | |
dc.relation.references | 13. Zheng, Y. & Elefteriadou, L. (2017). A model of pedestrian delay at unsignalized intersections in urban networks. Transportation Research Part B: Methodological, vol. 100, pp. 138–155 (in English). | |
dc.relation.references | 14. Wang, D. & Liu, C. S. (2018). Research on Priority Control Method of Conventional Public Traffic Signals. IOP Conf. Series: Earth and Environmental Science, 189, 1–7 (in English). | |
dc.relation.references | 15. Fadyushin, A. & Zaharov, D. (2020). Influence of the Parameters of the Bus Lane and the Bus Stop on the Delays of Private and Public Transport. Sustainability, 12, 1–18 (in English). | |
dc.relation.referencesen | 1. W Hua, X., Wang, W., Wang, Y. & Pu, Z. (2017). Optimizing Phase Compression for Transit Signal Priority at Isolated Intersections. Intersections. Transport, 32(4), 386–397 (in English). | |
dc.relation.referencesen | 2. Kellney, B. & Hidayati, I. (2016). Capacity reserves investigations – case studies from Cairo and Yogyakarta. Transportation Research Record, 438–447 (in English). | |
dc.relation.referencesen | 3. Oskarbski, J., Guminska, L., Miszewski, M. & Oskarbska, I. (2016) Analysis of signalized intersections in the context of pedestrian traffic. Transportation Research Procedia, 14. 2138–2147 (in English). | |
dc.relation.referencesen | 4. Houten, V., Malenfant, L. & Huitemad, D. (2018). Highvisibility enforcement on driver compliance with pedestrian right-of-way laws: 4-year follow-up. Transportation Research Record: Journal of the Transportation Research Board, vol. 2660, no. 1, pp. 58–65 (in English). | |
dc.relation.referencesen | 5. Gong, Q., Liang, X. & Xu, M. (2019). Pedestrian violations crossing behavior at signal intersections: A case study in Anning District of Lanzhou. OP Conf. Series: Materials Science and Engineering, 688, 1–9 (in English). | |
dc.relation.referencesen | 6. Fadyushin, A., Zaharov, D. & Karmanov, D. (2018). Estimation of the change in the parameters of traffic in the organization of the bus lane. Transportation Research Procedia, 36, 166-172 (in English). | |
dc.relation.referencesen | 7. Stapleton, S., Kirsch, T. & Gates, T. (2018). Factors affecting driver yielding compliance at uncontrolled midblock crosswalks on low-speed roadways. Transportation Research Record: Journal of the Transportation Research Board, vol. 2661, no. 1, pp. 95–102 (in English). | |
dc.relation.referencesen | 8. Yang, C., Wang, J. & Dong, J. (2020). Capacity Model of Exclusive Right-Turn Lane at Signalized Intersection considering Pedestrian-Vehicle Interaction. Journal of Advanced Transportation, 1-19 (in English). | |
dc.relation.referencesen | 9. Ben-Dor, G., Ben-Elia, E. & Beneson, I. (2018). Assessing the Impacts of Dedicated Bus Lanes on Urban Traffic Congestion and Modal Split with an Agent-Based Model. Procedia Computer Science, 130, 824-829 (in English). | |
dc.relation.referencesen | 10. Bourquin, A., Emerson, W., Sauerburger, D. & Barlow, M. (2018). Conditions that influence drivers’ behaviors at roundabouts: increasing yielding for pedestrians who are visually impaired. Journal of Visual Impairment & Blindness, vol. 112, no. 1, pp. 61–71 (in English). | |
dc.relation.referencesen | 11. Gitelman, V., Korchatov, A. & Elias, W. (2020). An Examination of the Safety Impacts of Bus Priority Routes in Major Israeli Cities. Sustainability, 12, 1–17 (in English). | |
dc.relation.referencesen | 12. Ma, Y., Lu, S. & Zhang, Y. (2020). Analysis on Illegal Crossing Behavior of Pedestrians at Signalized Intersections Based on Bayesian Network. Journal of Advanced Transportation, 2020, 1–14 (in English). | |
dc.relation.referencesen | 13. Zheng, Y. & Elefteriadou, L. (2017). A model of pedestrian delay at unsignalized intersections in urban networks. Transportation Research Part B: Methodological, vol. 100, pp. 138–155 (in English). | |
dc.relation.referencesen | 14. Wang, D. & Liu, C. S. (2018). Research on Priority Control Method of Conventional Public Traffic Signals. IOP Conf. Series: Earth and Environmental Science, 189, 1–7 (in English). | |
dc.relation.referencesen | 15. Fadyushin, A. & Zaharov, D. (2020). Influence of the Parameters of the Bus Lane and the Bus Stop on the Delays of Private and Public Transport. Sustainability, 12, 1–18 (in English). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Hrytsun O., Bura R., 2021 | |
dc.subject | вулично-дорожня мережа | |
dc.subject | транспортний потік | |
dc.subject | інтенсивність руху | |
dc.subject | швидкість руху | |
dc.subject | пропускна здатність | |
dc.subject | рівень завантаження | |
dc.subject | моделювання руху | |
dc.subject | натурні дослідження | |
dc.subject | регульовані перехрестя | |
dc.subject | road network | |
dc.subject | traffic flow | |
dc.subject | traffic intensity | |
dc.subject | speed of movement | |
dc.subject | capacity | |
dc.subject | volume capacity ratio | |
dc.subject | traffic simulation | |
dc.subject | field research | |
dc.subject | signalized intersections | |
dc.title | Capacity increasing of arterial streets with controlled motion | |
dc.title.alternative | Підвищення пропускної здатності магістральних вулиць з регульованим рухом | |
dc.type | Article |
Files
License bundle
1 - 1 of 1