Design and analysis of the overhead crane with six vertical columns

dc.citation.epage17
dc.citation.issue1
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage1
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationKingston University
dc.contributor.authorKorendiy, Vitaliy
dc.contributor.authorKachur, Oleksandr
dc.contributor.authorLanets, Olena
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-06T10:26:03Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThis study delves into the comprehensive examination of an overhead crane's construction, focusing on its frame, columns, and beams, while considering factors such as strength, stability, and stiffness. Through an in-depth review in the design domain, it is proposed a specific structural configuration for the overhead crane. This design comprises six vertical columns supporting two longitudinal beams equipped with tracks for the trolley's longitudinal movement. Additionally, cross beams featuring winches are mounted on the trolley's cross beams. The crane's columns are securely mounted on a foundation, and struts are employed to attach the crane to the load-bearing wall of the building, ensuring longitudinal and transverse stability. The inclusion of cross truss structures with longitudinal struts further enhances the crane's overall stiffness, with additional vertical struts provided to augment the left side's longitudinal stiffness. The study also encompasses the analysis of the crane frame's construction, complete with the development of an appropriate calculation scheme and the computation of static reactions in supports. Further calculations involve determining the cross-sections of vertical columns and longitudinal beams, ensuring compliance with strength, rigidity, and stability requirements. The selected cross-section for the columns, in the form of a square profile pipe (100×100×3 mm), is meticulously chosen to meet these criteria. Simulation modeling of load scenarios on the crane frame elements in SolidWorks software validates their strength, stiffness, and stability. Mathematical models and calculations provided the optimal parameters and characteristics of each crane component, ensuring a superior level of safety and operational efficiency. These results provide valuable insights for future research in mechanical engineering and the design of industrial mechanisms.
dc.format.extent1-17
dc.format.pages17
dc.identifier.citationKorendiy V. Design and analysis of the overhead crane with six vertical columns / Korendiy Vitaliy, Kachur Oleksandr, Lanets Olena // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 1–17.
dc.identifier.citationenKorendiy V. Design and analysis of the overhead crane with six vertical columns / Korendiy Vitaliy, Kachur Oleksandr, Lanets Olena // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 1–17.
dc.identifier.doidoi.org/10.23939/ujmems2024.01.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64004
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 1 (10), 2024
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 1 (10), 2024
dc.relation.references[1] Cranes - General design - Part 3-2: Limit states and proof of competence of wire ropes in reeving systems, EN 13001-3-2:2014/FPRA 1, 2019.
dc.relation.references[2] G. Przybyłek, J. Więckowski, "Method of assessing the technical condition and failure of overhead cranes designed to work in difficult conditions", Case Studies in Construction Materials, Vol.16, June 2022. https://doi.org/10.1016/j.cscm.2021.e00811
dc.relation.references[3] A. Urbaś, K. Augustynek, J. Stadnicki, "Dynamics analysis of a crane with consideration of load geometry and a rope sling system", Journal of Sound and Vibration, Vol. 572, March 2024. https://doi.org/10.1016/j.jsv.2023.118133
dc.relation.references[4] T. Zhao, M. Sun, S. Wang, G. Han, H. Wang, H. Chen, Y. Sun, "Dynamic analysis and robust control of ship-mounted crane with multi-cable anti-swing system", Ocean Engineering, Vol. 291, Jan. 2024. https://doi.org/10.1016/j.oceaneng.2023.116376
dc.relation.references[5] F. Krupa, J. Nemcik, S. Ozana, Z. Slanina, "NMPC Design and Embedded Application for Overhead Crane: Case Study", IFAC-PapersOnLine, Vol. 55(4), pp. 356-361, 2022. https://doi.org/10.1016/j.ifacol.2022.06.059
dc.relation.references[6] S. Ö. Doğan, "Design and analysis of double girder overhead crane system", Journal of Radiation Research and Applied Sciences, Vol.16(4), 2023. https://doi.org/10.1016/j.jrras.2023.100701
dc.relation.references[7] T. Gao, J. Huang, W. Singhose, "Eccentric-load dynamics and oscillation control of industrial cranes transporting heterogeneous loads", Mechanism and Machine Theory, Vol. 172, Jun. 2022. https://doi.org/10.1016/j.mechmachtheory.2022.104800
dc.relation.references[8] W. Kacalak, Z. Budniak, M. Majewski, "Stability Assessment as a Criterion of Stabilization of the Movement Trajectory of Mobile Crane Working Elements", International Journal of Applied Mechanics and Engineering, Vol. 23(1), pp. 65-77, 2018. https://doi.org/10.1515/ijame-2018-0004
dc.relation.references[9] Y. Man, Y. Liu, "Positioning and antiswing control of overhead crane systems: A supervisory scheme", Journal of the Franklin Institute, Vol. 360(18), pp. 14329-14343, 2023. https://doi.org/10.1016/j.jfranklin.2023.10.038
dc.relation.references[10] M. R. Mojallizadeh, B. Brogliato, C. Prieur, "Modeling and control of overhead cranes: A tutorial overview and perspectives", Annual Reviews in Control, Vol. 56, 2023. https://doi.org/10.1016/j.arcontrol.2023.03.002
dc.relation.references[11] F. Kawai, J. D. Bendtsen, "Observer-based Control Design for Overhead Crane Systems", IFAC-PapersOnLine, Vol. 56(2), pp. 8776-8783, 2023. https://doi.org/10.1016/j.ifacol.2023.10.063
dc.relation.references[12] G. Przybyłek, J. Więckowski, "Method of assessing the technical condition and failure of overhead cranes designed to work in difficult conditions", Case Studies in Construction Materials, Vol. 16, Jun. 2022. https://doi.org/10.1016/j.cscm.2021.e00811
dc.relation.referencesen[1] Cranes - General design - Part 3-2: Limit states and proof of competence of wire ropes in reeving systems, EN 13001-3-2:2014/FPRA 1, 2019.
dc.relation.referencesen[2] G. Przybyłek, J. Więckowski, "Method of assessing the technical condition and failure of overhead cranes designed to work in difficult conditions", Case Studies in Construction Materials, Vol.16, June 2022. https://doi.org/10.1016/j.cscm.2021.e00811
dc.relation.referencesen[3] A. Urbaś, K. Augustynek, J. Stadnicki, "Dynamics analysis of a crane with consideration of load geometry and a rope sling system", Journal of Sound and Vibration, Vol. 572, March 2024. https://doi.org/10.1016/j.jsv.2023.118133
dc.relation.referencesen[4] T. Zhao, M. Sun, S. Wang, G. Han, H. Wang, H. Chen, Y. Sun, "Dynamic analysis and robust control of ship-mounted crane with multi-cable anti-swing system", Ocean Engineering, Vol. 291, Jan. 2024. https://doi.org/10.1016/j.oceaneng.2023.116376
dc.relation.referencesen[5] F. Krupa, J. Nemcik, S. Ozana, Z. Slanina, "NMPC Design and Embedded Application for Overhead Crane: Case Study", IFAC-PapersOnLine, Vol. 55(4), pp. 356-361, 2022. https://doi.org/10.1016/j.ifacol.2022.06.059
dc.relation.referencesen[6] S. Ö. Doğan, "Design and analysis of double girder overhead crane system", Journal of Radiation Research and Applied Sciences, Vol.16(4), 2023. https://doi.org/10.1016/j.jrras.2023.100701
dc.relation.referencesen[7] T. Gao, J. Huang, W. Singhose, "Eccentric-load dynamics and oscillation control of industrial cranes transporting heterogeneous loads", Mechanism and Machine Theory, Vol. 172, Jun. 2022. https://doi.org/10.1016/j.mechmachtheory.2022.104800
dc.relation.referencesen[8] W. Kacalak, Z. Budniak, M. Majewski, "Stability Assessment as a Criterion of Stabilization of the Movement Trajectory of Mobile Crane Working Elements", International Journal of Applied Mechanics and Engineering, Vol. 23(1), pp. 65-77, 2018. https://doi.org/10.1515/ijame-2018-0004
dc.relation.referencesen[9] Y. Man, Y. Liu, "Positioning and antiswing control of overhead crane systems: A supervisory scheme", Journal of the Franklin Institute, Vol. 360(18), pp. 14329-14343, 2023. https://doi.org/10.1016/j.jfranklin.2023.10.038
dc.relation.referencesen[10] M. R. Mojallizadeh, B. Brogliato, C. Prieur, "Modeling and control of overhead cranes: A tutorial overview and perspectives", Annual Reviews in Control, Vol. 56, 2023. https://doi.org/10.1016/j.arcontrol.2023.03.002
dc.relation.referencesen[11] F. Kawai, J. D. Bendtsen, "Observer-based Control Design for Overhead Crane Systems", IFAC-PapersOnLine, Vol. 56(2), pp. 8776-8783, 2023. https://doi.org/10.1016/j.ifacol.2023.10.063
dc.relation.referencesen[12] G. Przybyłek, J. Więckowski, "Method of assessing the technical condition and failure of overhead cranes designed to work in difficult conditions", Case Studies in Construction Materials, Vol. 16, Jun. 2022. https://doi.org/10.1016/j.cscm.2021.e00811
dc.relation.urihttps://doi.org/10.1016/j.cscm.2021.e00811
dc.relation.urihttps://doi.org/10.1016/j.jsv.2023.118133
dc.relation.urihttps://doi.org/10.1016/j.oceaneng.2023.116376
dc.relation.urihttps://doi.org/10.1016/j.ifacol.2022.06.059
dc.relation.urihttps://doi.org/10.1016/j.jrras.2023.100701
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2022.104800
dc.relation.urihttps://doi.org/10.1515/ijame-2018-0004
dc.relation.urihttps://doi.org/10.1016/j.jfranklin.2023.10.038
dc.relation.urihttps://doi.org/10.1016/j.arcontrol.2023.03.002
dc.relation.urihttps://doi.org/10.1016/j.ifacol.2023.10.063
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Korendiy V., Kachur O., Lanets O., 2024
dc.subjectoverhead crane
dc.subjectstructural analysis
dc.subjectdesign optimization
dc.subjectstrength
dc.subjectindustrial applications
dc.subjectsimulation modeling
dc.titleDesign and analysis of the overhead crane with six vertical columns
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n1_Korendiy_V-Design_and_analysis_of_the_1-17.pdf
Size:
11.96 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n1_Korendiy_V-Design_and_analysis_of_the_1-17__COVER.png
Size:
443.74 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: