Spatiotemporal changes in the congestion index of streets and roads in the armed conflict conditions

dc.contributor.affiliationНаціональний університет «Львівська політехніка»
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnische Universität Dresden
dc.contributor.affiliationThe Australian National University
dc.contributor.authorSotnikova, Anna
dc.contributor.authorQurashi, Moeid
dc.contributor.authorWaller, Steven Travis
dc.coverage.placenameЛьвів
dc.date.accessioned2025-01-03T08:30:41Z
dc.date.issued2024
dc.date.submitted2024
dc.description.abstractThis article examines the impact of war on the formation of urban transport flows. During armed conflicts, the transport infrastructure of cities undergoes significant changes, which greatly affects the mobility and safety of the population. The need to study this issue is particularly relevant in the context of the ongoing Russian-Ukrainian war, which has caused the largest migration in Europe since World War II. The paper explores the dynamics of these changes and ways to adapt urban transportation systems to war conditions. The study aims to determine the parameters of urban transport zones with specific disruptions in network link congestion indices during different phases of the full-scale invasion of Ukraine by the Russian Federation. The research methodology is based on analyzing statistical data on population movements, applying traffic flow models, and conducting a systematic analysis of the interaction between various components of urban transport systems. The goal of this study is to establish the relationships between the areas of cities where disruptions in congestion indices were observed during the initial phase of the invasion. The cities studied are Lviv and Kyiv, whose road networks are also described in the article. Polynomial regression models with two independent variables (the congestion index and the number of days from the beginning of each phase) were developed for three predefined time phases, each with distinct features of the armed conflict. The dependent variable is the area of the city experiencing disruptions in the congestion index relative to normal traffic flow conditions. The study concludes that the relationship between changes in the congestion index and the area of the city experiencing deviations is directly proportional. The absolute values of the indicators studied are lower for Lviv’s network than for Kyiv’s. У статті досліджено вплив війни на формування транспортних потоків у містах. В умовах гуманітарних конфліктів транспортна інфраструктура міст зазнає серйозних змін, що істотно впливає на мобільність та безпеку населення. Особливо актуальна необхідність вивчення цього питання у контексті сучасної російсько-української війни, що спричинила наймасовішу міграцію населення у Європі з часів Другої світової війни. У роботі вивчено динаміку змін та способи адаптації системи міського транспорту до умов війни. Дослідження полягає у визначенні параметрів транспортних зон міст із особливими відхиленнями індексу завантаження відрізків мережі протягом кількох фаз повномасштабного вторгнення російської федерації (РФ) в Україну. Методологія дослідження ґрунтується на аналізі статистичних даних про пересування населення, використанні моделей транспортних потоків та системного аналізу взаємодії різних складових системи міського транспорту. Мета цього дослідження – визначення залежності між площею міста, де спостерігаються відхилення у показниках індексу завантаження відрізків вуличнодорожньої мережі протягом початкової фази повномасштабного вторгнення. Досліджено міста Львів та Київ, характеристику вулично-дорожніх мереж яких також наведено у тстатті. Для попередньо визначених трьох часових фаз, із різними особливостями перебігу збройного конфлікту, побудовано моделі поліноміальної регресії із двома незалежними змінними (індекс завантаження та кількість днів від початку фази). Залежною змінною є площа території міста з відхиленнями індексу завантаження від нормального стану транспортних потоків. Визначено, що залежність між зміною індексу завантаження та площею із відхиленнями є прямо пропорційною. Абсолютні значення досліджуваних показників нижчі для мережі Львова, ніж для Києва.
dc.format.pages1-13
dc.identifier.citationSotnikova A. Spatiotemporal changes in the congestion index of streets and roads in the armed conflict conditions / Anna Sotnikova, Moeid Qurashi, Steven Travis Waller // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 5. — No 2. — P. 1–13.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/62754
dc.language.isoen
dc.publisherНаціональний університет «Львівська політехніка»
dc.relation.ispartofseriesTransport Technologies
dc.relation.references1. Kawasaki, Y., Kuwahara, M., Hara, Y., Mitani, T., Takenouchi, A., Iryo, T., & Urata, J. (2017). Investigation of traffic and evacuation aspects at Kumamoto earthquake and the future issues. Journal of Disaster Research, 12(2), 272–286. doi: 10.20965/jdr.2017.p0272 (in English). 2. Costa, C., Figueiredo, R., Silva, V., & Bazzurro, P. (2020). Application of open tools and datasets to probabilistic modeling of road traffic disruptions due to earthquake damage. Earthquake Engineering & Structural Dynamics, 49(12), 1236–1255. doi: 10.1002/eqe.3288 (in English). 3. Pregnolato, M., Ford, A., Wilkinson, S. M., & Dawson, R. J. (2017). The impact of flooding on road transport: A depth-disruption function. Transportation Research Part D Transport and Environment, 55, 67–81. doi: 10.1016/j.trd.2017.06.020 (in English). 4. Salvati, P., Petrucci, O., Rossi, M., Bianchi, C., Pasqua, A. A., & Guzzetti, F. (2017). Gender, age and circumstances analysis of flood and landslide fatalities in Italy. The Science of the Total Environment, 610–611, 867- 879. doi: 10.1016/j.scitotenv.2017.08.064 (in English). 5. Pyatkova, K., Chen, A. S., Butler, D., Vojinović, Z., & Djordjević, S. (2019). Assessing the knock-on effects of flooding on road transportation. Journal of Environmental Management, 244, 48–60. doi: 10.1016/j.jenvman.2019.05.013 (in English). 6. Patra, S. S., Chilukuri, B. R., & Vanajakshi, L. (2021b). Analysis of road traffic pattern changes due to activity restrictions during COVID-19 pandemic in Chennai. Transportation Letters, 13(5–6), 473–481. doi: 10.1080/19427867.2021.1899580 (in English). 7. Bucsky, P. (2020a). Modal share changes due to COVID-19: The case of Budapest. Transportation Research Interdisciplinary Perspectives, 8, 100141. doi: 10.1016/j.trip.2020.100141 (in English). 8. Macioszek, E., & Kurek, A. (2021). Extracting Road Traffic Volume in the City before and during Covid-19 through Video Remote Sensing. Remote Sensing, 13(12), 2329. doi: 10.3390/rs13122329 (in English). 9. Baucum, M., Rosoff, H., John, R., Burns, W., & Slovic, P. (2018b). Modeling public responses to softtarget transportation terror. Environment Systems & Decisions, 38(2), 239–249. doi: 10.1007/s10669-018-9676-7 (in English). 10. Ayton, P., Murray, S., & Hampton, J. A. (2019). Terrorism, dread risk and bicycle accidents. Judgment and Decision Making, 14(3), 280–287. doi: 10.1017/s1930297500004319 (in English). 11. Gaissmaier, W., & Gigerenzer, G. (2012). 9/11, Act II: A Fine-Grained Analysis of Regional Variations in Traffic Fatalities in the Aftermath of the Terrorist Attacks. Psychological Science, 23(12), 1449–1454. doi: 10.1177/0956797612447804 (in English). 12. Waller, S. T., Qurashi, M., Sotnikova, A., Karva, L., & Chand, S. (2023). Analyzing and modeling network travel patterns during the Ukraine invasion using Crowd-Sourced Pervasive Traffic data. Transportation Research Record Journal of the Transportation Research Board, 2677(10), 491–507. doi: 10.1177/03611981231161622 (in English).13. Waller, S. T., Chand, S., Zlojutro, A., Nair, D., Niu, C., Wang, J., Zhang, X., & Dixit, V. V. (2021). Rapidex: a novel tool to estimate Origin–Destination trips using pervasive traffic data. Sustainability, 13(20), 11171. doi: 10.3390/su132011171 (in English). 14. Sotnikova, A. (2023). Analiz transportnoi povedinky naselennia Ukrainy pid chas pochatkovoi fazy povnomasshtabnoho vtorhnennia [Analysis of the travel behavior of Ukrainian population during the initial phase of Full-Scale Invasion]. Visnyk Vinnytskoho politekhnichnoho instytutu [Visnyk of Vinnytsia Politechnical Institute], 171(6), 65–70. doi: 10.31649/1997-9266-2023-171-6-65-70 (in Ukrainian). 15. Amrutsamanvar, R., Chand, S., Qurashi, M., & Waller, S. T. (2023). Rapid Planning: Opportunities with Pervasive Data for Sustainable Mobility. 2023 Smart City Symposium Prague (SCSP). doi: 10.1109/scsp58044.2023.10146224 (in English). 16. Nascimento, G. F. M., Wurtz, F., Kuo-Peng, P., Delinchant, B., & Batistela, N. J. (2021). Outlier detection in buildings’ power consumption data using forecast error. Energies, 14(24), 8325. doi: 10.3390/en14248325 (in English).
dc.subjecttravel time, transport system, road network, congestion index, regression analysis, accessibility of transport zones, transport modeling, тривалість пересування, транспортна система, вулично-дорожня мережа, індекс завантаження, регресійний аналіз, доступність транспортних зон, транспортне моделювання.
dc.titleSpatiotemporal changes in the congestion index of streets and roads in the armed conflict conditions
dc.title.alternativeПросторово-часові зміни індексу завантаження вулиць та доріг в умовах збройного конфлікту
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Transport_5_2-3-94-1-13.pdf
Size:
896.5 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: