Моделі та засоби відлагодження й тестування мобільних систем для нейроподібного криптографічного захисту й передачі даних
dc.citation.epage | 55 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Український журнал інформаційних технологій | |
dc.citation.spage | 45 | |
dc.citation.volume | 4 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Цмоць, І. Г. | |
dc.contributor.author | Теслюк, В. М. | |
dc.contributor.author | Опотяк, Ю. В. | |
dc.contributor.author | Піх, І. В. | |
dc.contributor.author | Tsmots, I. G. | |
dc.contributor.author | Teslyuk, V. M. | |
dc.contributor.author | Opotiak, Yu. V. | |
dc.contributor.author | Pikh, I. V. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-03-27T08:56:57Z | |
dc.date.available | 2024-03-27T08:56:57Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | Визначено потребу забезпечення криптографічного захисту та завадостійкості при передачі даних і команд управління за допомогою мобільних робототехнічних платформ, важливість врахування обмеження щодо габаритів, енергоспоживання та продуктивності. З'ясовано, що одним із шляхів забезпечення вимог криптографічного захисту даних є використання нейроподібних мереж. Їхня особливість в можливості наперед обчислити вагові коефіцієнти, які будуть використані при шифруванні/дешифруванні даних. Запропоновано при нейроподібному шифруванні/дешифруванні даних генерувати ключ з урахуванням архітектури нейроподібної мережі (кількості нейронів, кількості входів і їх розрядності), матриці вагових коефіцієнтів і таблиці для маскування. Визначено, що нейроподібна мережа з наперед обчисленими ваговими коефіцієнтами дає змогу використати таблично-алгоритмічний метод при шифруванні/дешифруванні даних, який ґрунтується на операціях зчитування з пам'яті, додавання та зсуву. Проаналізовано обмеження щодо габаритів, енергоспоживання та продуктивності, які під час реалізації можна подолати шляхом використання універсального процесорного ядра, доповненого спеціалізованими апаратними засобами (ПЛІС), що реалізують нейроподібні елементи, а сумісне використання програмних і ПЛІС забезпечує ефективну реалізацію алгоритмів нейроподібного шифрування/дешифрування даних і команд управління. Представлено моделі та засоби для відлагодження й тестування нейроподібної криптографічної системи. Розроблено модель попередніх налаштувань системи нейроподібного шифрування даних, основними компонентами якої є формувач архітектури нейроподібної мережі, обчислювач матриць вагових коефіцієнтів і обчислювач таблиць макрочасткових добутків. Розроблено модель процесу нейроподібного шифрування з використанням таблично-алгоритмічного методу, основними компонентами якої є перетворювач повідомлення, формувач адреси зчитування з таблиць, N таблиць макрочасткових добутків, N суматорів і комутатор, реалізація якої забезпечує тестування системи криптографічного захисту й передачі даних (СКЗПД) у реальному часі. Розроблено моделі тестування та відлагодження блоків шифрування (дешифрування), кодування (декодування), маскування (демаскування) даних, які за рахунок використання еталонних значень для порівняння забезпечують підвищення якості тестування та відлагодження СКЗПД. Розроблено СКЗПД, яка внаслідок динамічної зміни типу архітектури нейроподібної мережі (НПМ) та значень вагових коефіцієнтів (ВК), кодів маски та баркероподібного коду (БПК) забезпечує підвищення криптостійкості процедури передачі даних. Запропоновано динамічну зміну архітектури НПМ (значення ВК), маски та БПК, що сприяє підвищенню криптостійкості СКЗПД загалом. Виконано тестування імітаційної моделі на прикладі передачі повідомлень для різних конфігурацій СКЗПД. | |
dc.description.abstract | The work revealed the need for providing cryptographic protection and immunity to data transmission and control commands when using the mobile robotic platform as well as the importance of taking into account the limitations regarding dimensions, energy consumption and productivity. It was found that one of the ways to meet the requirements of cryptographic protection is the use of neuro-like networks. Their feature is the ability to pre-calculate the weight coefficients that will be used when encrypting/decrypting data. It is suggested that during neuro-like encryption/decryption of data, the key should be generated taking into account the architecture of the neuro-like network (the number of neurons, the number of inputs and their bit rate), the matrix of weight coefficients and the table for masking. It was determined that a neural network with pre-calculated weight coefficients makes it possible to use a table-algorithmic method for data encryption/decryption, which is based on the operations of reading from memory, adding and shifting. Limitations regarding dimensions, energy consumption and performance are analyzed. They can be overcome during implementation by using a universal processor core supplemented with specialized FPGA hardware for neuro-like elements. That is the combined use of software and specialized hardware ensures the effective implementation of neuro-like data encryption/decryption algorithms and management teams. Models and tools for debugging and testing a neuro-like cryptographic system are presented. A model of the preliminary settings of the neuro-like data encryption system has been developed, the main components of which are the former of the neuro-like network architecture, the calculator of weight coefficient matrices and the calculator of tables of macro-partial products. A model of the process of neuro-like encryption of control commands using a table-algorithmic method has been developed. Models for testing and debugging blocks of encryption (decryption), encoding (decoding), and masking (unmasking) of data have been developed, which, due to the use of reference values for comparison, ensure an increase in the quality of testing and debugging of the cryptographic system. A cryptographic system was developed, which, as a result of a dynamic change in the type of neuro-like network architecture and the values of weighting coefficients, mask codes and barker-like code, provides an increase in the crypto-resistance of data transmission. Testing of the simulation model was carried out on the example of message transmission for various configurations of a cryptographic system. | |
dc.format.extent | 45-55 | |
dc.format.pages | 11 | |
dc.identifier.citation | Моделі та засоби відлагодження й тестування мобільних систем для нейроподібного криптографічного захисту й передачі даних / І. Г. Цмоць, В. М. Теслюк, Ю. В. Опотяк, І. В. Піх // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2022. — Том 4. — № 2. — С. 45–55. | |
dc.identifier.citationen | Models and tools for debugging and testing mobile systems for neuro-like cryptographic protection of data transmission / I. G. Tsmots, V. M. Teslyuk, Yu. V. Opotiak, I. V. Pikh // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 2. — P. 45–55. | |
dc.identifier.issn | 2707-1898 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61555 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Український журнал інформаційних технологій, 2 (4), 2022 | |
dc.relation.ispartof | Ukrainian Journal of Information Technology, 2 (4), 2022 | |
dc.relation.references | [1] Cai, J., Takemoto, M., & Nakajo, H. (2018). Implementation of DNN on a RISC-V Open Source Microprocessor for IoT devices. 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), pp. 295–299. https://doi.org/10.1109/GCCE.2018.8574663 | |
dc.relation.references | [2] Cai, L., et al. (2019). TEA-DNN: the Quest for Time-Energy-Accuracy Co-optimized Deep Neural Networks. 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 1–6. https://doi.org/10.1109/ISLPED.2019.8824934 | |
dc.relation.references | [3] Dong, T., & Huang, T. (2020). Neural Cryptography Based on Complex-Valued Neural Network, in IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4999–5004. https://doi.org/10.1109/TNNLS.2019.2955165 | |
dc.relation.references | [4] Forgáč, R., & Očkay, M. (2019). Contribution to Symmetric Cryptography by Convolutional Neural Networks, Communication and Information Technologies (KIT), 1–6. https://doi.org/10.23919/KIT.2019.8883490 | |
dc.relation.references | [5] Hadnagy, Á., Fehér, B., & Kovácsházy, T. (2018). Efficient implementation of convolutional neural networks on FPGA. 2018 19th International Carpathian Control Conference (ICCC), pp. 359-364. https://doi.org/10.1109/CarpathianCC.2018.8399656 | |
dc.relation.references | [6] Jiang, L. (2020). The Application Analysis of Computer Network Security Data Encryption Technology. In: Abawajy, J., Choo, KK., Xu, Z., Atiquzzaman, M. (Eds). 2020 International Conference on Applications and Techniques in Cyber Intelligence. ATCI 2020. Advances in Intelligent Systems and Computing, 1244. Springer, Cham. https://doi.org/10.1007/978-3-030-53980-1_21 | |
dc.relation.references | [7] Kotsovsky, V., Batyuk, A., & Mykoriak, I. (2020). The Computation Power and Capacity of Bithreshold Neurons. 2020 IEEE 15th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2020. Proceedings, 1, pp. 28-31. https://doi.org/10.1109/CSIT49958.2020.9322014 | |
dc.relation.references | [8] Meraouche, I., Dutta, S., Tan, H., & Sakurai, K. (2021). Neural Networks-Based Cryptography: A Survey. In IEEE Access, 9, pp. 124727–124740. https://doi.org/10.1109/ACCESS.2021.3109635 | |
dc.relation.references | [9] Peleshchak, R., Lytvyn, V., Kholodna, N., Peleshchak, I., & Vysotska, V. (2022). Two-Stage AES Encryption Method Based on Stochastic Error of a Neural Network. IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 381–385. https://doi.org/10.1109/TCSET55632.2022.9766991 | |
dc.relation.references | [10] Saraswat, P., Garg, K., Tripathi, R., & Agarwal, A. (2019). Encryption Algorithm Based on Neural Network. 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), 1–5. https://doi.org/10.1109/IoTSIU.2019.8777637 | |
dc.relation.references | [11] Sumayyabeevi, V. A., Poovely, J. J., Aswathy, N., & Chinnu, S. (2021). A New Hardware Architecture for FPGA Implementation of Feed Forward Neural Networks. 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS), pp. 107–111. https://doi.org/10.1109/ACCESS51619.2021.9563342 | |
dc.relation.references | [12] Tkachenko, R., Tsmots, I., Tsymbal, Y., Skorokhoda, O. (2019). Neural-like Methods and Hardware Structures for Real-time Data Encryption and Decryption. International Scientific and Technical Conference on Computer Sciences and Information Technologies, 3, 248-253. https://doi.org/10.1109/STC-CSIT.2019.8929809 | |
dc.relation.references | [13] Tsmots, I., & Skorokhoda, O. (2010). Methods and VLSIstructures for neural element implementation. Perspective Technologies and Methods in MEMS Design, MEMSTECH2010 – Proceedings of the 6th International Conference, 135. | |
dc.relation.references | [14] Tsmots, I., Rabyk, V., Skorokhoda, O., & Teslyuk, T. (2019). Neural element of parallel-stream type with preliminary formation of group partial products. Electronics and information technologies (ELIT-2019). Proceedings of the XIth International scientific and practical conference, 16 –18 September, 2019, Lviv, Ukraine, pp. 154-158. https://doi.org/10.1109/ELIT.2019.8892334 | |
dc.relation.references | [15] Tsmots, I., Rabyk, V., Skorokhoda, O., & Tsymbal, Y. (2021). Neural-like real-time data protection and transmission system. Advances in Intelligent Systems and Computing (AISC), 1293: Advances in Intelligent Systems and Computing V. Selected papers from the International conference on computer science and information technologies. https://doi.org/10.1007/978-3-030-63270-0_8 | |
dc.relation.references | [16] Tsmots, I., Teslyuk, V., Lukashchuk, Y., & Opotiak, Y. (2022). Method of Training and Implementation on the Basis of Neural Networks of Cryptographic Data Protection CEUR Workshop Proceedings, 3171, 916-928. | |
dc.relation.references | [17] Tsmots, I., Tsymbal, Y., Khavalko, V., Skorokhoda, O., & Tesluyk, T. (2018). Neural-Like Means for Data Streams Encryption and Decryption in Real Time. Processing of the 2018. IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, 438-443. https://doi.org/10.1109/DSMP.2018.8478513 | |
dc.relation.references | [18] Valavi, H., Ramadge, P. J., Nestler, E., & Verma, N. (2018). A Mixed-Signal Binarized Convolutional-Neural-Network Accelerator Integrating Dense Weight Storage and Multiplication for Reduced Data Movement, 2018 IEEE Symposium on VLSI Circuits, 141–142. https://doi.org/10.1109/VLSIC.2018.8502421 | |
dc.relation.references | [19] Wang, J., Cheng, L.-M., & Su, T. (2018). Multivariate Cryptography Based on Clipped Hopfield Neural Network, in IEEE Transactions on Neural Networks and Learning Systems, 29(2), 353–363. https://doi.org/10.1109/TNNLS.2016.2626466 | |
dc.relation.references | [20] Zhu, Y., Vargas, D. V., & Sakurai, K. (2018). Neural Cryptography Based on the Topology Evolving Neural Networks. 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW), 472–478. https://doi.org/10.1109/CANDARW.2018.00091 | |
dc.relation.references | [21] Zolfaghari, B., & Koshiba, T. (2022). The Dichotomy of Neural Networks and Cryptography: War and Peace. Appl. Syst. Innov., 5, 61. https://doi.org/10.3390/asi5040061 | |
dc.relation.referencesen | [1] Cai, J., Takemoto, M., & Nakajo, H. (2018). Implementation of DNN on a RISC-V Open Source Microprocessor for IoT devices. 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), pp. 295–299. https://doi.org/10.1109/GCCE.2018.8574663 | |
dc.relation.referencesen | [2] Cai, L., et al. (2019). TEA-DNN: the Quest for Time-Energy-Accuracy Co-optimized Deep Neural Networks. 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 1–6. https://doi.org/10.1109/ISLPED.2019.8824934 | |
dc.relation.referencesen | [3] Dong, T., & Huang, T. (2020). Neural Cryptography Based on Complex-Valued Neural Network, in IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4999–5004. https://doi.org/10.1109/TNNLS.2019.2955165 | |
dc.relation.referencesen | [4] Forgáč, R., & Očkay, M. (2019). Contribution to Symmetric Cryptography by Convolutional Neural Networks, Communication and Information Technologies (KIT), 1–6. https://doi.org/10.23919/KIT.2019.8883490 | |
dc.relation.referencesen | [5] Hadnagy, Á., Fehér, B., & Kovácsházy, T. (2018). Efficient implementation of convolutional neural networks on FPGA. 2018 19th International Carpathian Control Conference (ICCC), pp. 359-364. https://doi.org/10.1109/CarpathianCC.2018.8399656 | |
dc.relation.referencesen | [6] Jiang, L. (2020). The Application Analysis of Computer Network Security Data Encryption Technology. In: Abawajy, J., Choo, KK., Xu, Z., Atiquzzaman, M. (Eds). 2020 International Conference on Applications and Techniques in Cyber Intelligence. ATCI 2020. Advances in Intelligent Systems and Computing, 1244. Springer, Cham. https://doi.org/10.1007/978-3-030-53980-1_21 | |
dc.relation.referencesen | [7] Kotsovsky, V., Batyuk, A., & Mykoriak, I. (2020). The Computation Power and Capacity of Bithreshold Neurons. 2020 IEEE 15th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2020. Proceedings, 1, pp. 28-31. https://doi.org/10.1109/CSIT49958.2020.9322014 | |
dc.relation.referencesen | [8] Meraouche, I., Dutta, S., Tan, H., & Sakurai, K. (2021). Neural Networks-Based Cryptography: A Survey. In IEEE Access, 9, pp. 124727–124740. https://doi.org/10.1109/ACCESS.2021.3109635 | |
dc.relation.referencesen | [9] Peleshchak, R., Lytvyn, V., Kholodna, N., Peleshchak, I., & Vysotska, V. (2022). Two-Stage AES Encryption Method Based on Stochastic Error of a Neural Network. IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 381–385. https://doi.org/10.1109/TCSET55632.2022.9766991 | |
dc.relation.referencesen | [10] Saraswat, P., Garg, K., Tripathi, R., & Agarwal, A. (2019). Encryption Algorithm Based on Neural Network. 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), 1–5. https://doi.org/10.1109/IoTSIU.2019.8777637 | |
dc.relation.referencesen | [11] Sumayyabeevi, V. A., Poovely, J. J., Aswathy, N., & Chinnu, S. (2021). A New Hardware Architecture for FPGA Implementation of Feed Forward Neural Networks. 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS), pp. 107–111. https://doi.org/10.1109/ACCESS51619.2021.9563342 | |
dc.relation.referencesen | [12] Tkachenko, R., Tsmots, I., Tsymbal, Y., Skorokhoda, O. (2019). Neural-like Methods and Hardware Structures for Real-time Data Encryption and Decryption. International Scientific and Technical Conference on Computer Sciences and Information Technologies, 3, 248-253. https://doi.org/10.1109/STC-CSIT.2019.8929809 | |
dc.relation.referencesen | [13] Tsmots, I., & Skorokhoda, O. (2010). Methods and VLSIstructures for neural element implementation. Perspective Technologies and Methods in MEMS Design, MEMSTECH2010 – Proceedings of the 6th International Conference, 135. | |
dc.relation.referencesen | [14] Tsmots, I., Rabyk, V., Skorokhoda, O., & Teslyuk, T. (2019). Neural element of parallel-stream type with preliminary formation of group partial products. Electronics and information technologies (ELIT-2019). Proceedings of the XIth International scientific and practical conference, 16 –18 September, 2019, Lviv, Ukraine, pp. 154-158. https://doi.org/10.1109/ELIT.2019.8892334 | |
dc.relation.referencesen | [15] Tsmots, I., Rabyk, V., Skorokhoda, O., & Tsymbal, Y. (2021). Neural-like real-time data protection and transmission system. Advances in Intelligent Systems and Computing (AISC), 1293: Advances in Intelligent Systems and Computing V. Selected papers from the International conference on computer science and information technologies. https://doi.org/10.1007/978-3-030-63270-0_8 | |
dc.relation.referencesen | [16] Tsmots, I., Teslyuk, V., Lukashchuk, Y., & Opotiak, Y. (2022). Method of Training and Implementation on the Basis of Neural Networks of Cryptographic Data Protection CEUR Workshop Proceedings, 3171, 916-928. | |
dc.relation.referencesen | [17] Tsmots, I., Tsymbal, Y., Khavalko, V., Skorokhoda, O., & Tesluyk, T. (2018). Neural-Like Means for Data Streams Encryption and Decryption in Real Time. Processing of the 2018. IEEE 2nd International Conference on Data Stream Mining and Processing, DSMP 2018, 438-443. https://doi.org/10.1109/DSMP.2018.8478513 | |
dc.relation.referencesen | [18] Valavi, H., Ramadge, P. J., Nestler, E., & Verma, N. (2018). A Mixed-Signal Binarized Convolutional-Neural-Network Accelerator Integrating Dense Weight Storage and Multiplication for Reduced Data Movement, 2018 IEEE Symposium on VLSI Circuits, 141–142. https://doi.org/10.1109/VLSIC.2018.8502421 | |
dc.relation.referencesen | [19] Wang, J., Cheng, L.-M., & Su, T. (2018). Multivariate Cryptography Based on Clipped Hopfield Neural Network, in IEEE Transactions on Neural Networks and Learning Systems, 29(2), 353–363. https://doi.org/10.1109/TNNLS.2016.2626466 | |
dc.relation.referencesen | [20] Zhu, Y., Vargas, D. V., & Sakurai, K. (2018). Neural Cryptography Based on the Topology Evolving Neural Networks. 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW), 472–478. https://doi.org/10.1109/CANDARW.2018.00091 | |
dc.relation.referencesen | [21] Zolfaghari, B., & Koshiba, T. (2022). The Dichotomy of Neural Networks and Cryptography: War and Peace. Appl. Syst. Innov., 5, 61. https://doi.org/10.3390/asi5040061 | |
dc.relation.uri | https://doi.org/10.1109/GCCE.2018.8574663 | |
dc.relation.uri | https://doi.org/10.1109/ISLPED.2019.8824934 | |
dc.relation.uri | https://doi.org/10.1109/TNNLS.2019.2955165 | |
dc.relation.uri | https://doi.org/10.23919/KIT.2019.8883490 | |
dc.relation.uri | https://doi.org/10.1109/CarpathianCC.2018.8399656 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-53980-1_21 | |
dc.relation.uri | https://doi.org/10.1109/CSIT49958.2020.9322014 | |
dc.relation.uri | https://doi.org/10.1109/ACCESS.2021.3109635 | |
dc.relation.uri | https://doi.org/10.1109/TCSET55632.2022.9766991 | |
dc.relation.uri | https://doi.org/10.1109/IoTSIU.2019.8777637 | |
dc.relation.uri | https://doi.org/10.1109/ACCESS51619.2021.9563342 | |
dc.relation.uri | https://doi.org/10.1109/STC-CSIT.2019.8929809 | |
dc.relation.uri | https://doi.org/10.1109/ELIT.2019.8892334 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-63270-0_8 | |
dc.relation.uri | https://doi.org/10.1109/DSMP.2018.8478513 | |
dc.relation.uri | https://doi.org/10.1109/VLSIC.2018.8502421 | |
dc.relation.uri | https://doi.org/10.1109/TNNLS.2016.2626466 | |
dc.relation.uri | https://doi.org/10.1109/CANDARW.2018.00091 | |
dc.relation.uri | https://doi.org/10.3390/asi5040061 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | таблично-алгоритмічний метод розрахунку вагових коефіцієнтів нейроподібної мережі | |
dc.subject | імітаційна модель нейроподібного шифрування/дешифрування | |
dc.subject | динамічна зміна архітектури нейроподібної мережі | |
dc.subject | обчислення таблиць макрочасткових добутків | |
dc.subject | tabular-algorithmic method of calculating the weight coefficients of a neuro-like network | |
dc.subject | simulation model of neuro-like encryption/decryption | |
dc.subject | dynamic change of the architecture of the neuro-like network | |
dc.subject | calculation of tables of macropartial products | |
dc.title | Моделі та засоби відлагодження й тестування мобільних систем для нейроподібного криптографічного захисту й передачі даних | |
dc.title.alternative | Models and tools for debugging and testing mobile systems for neuro-like cryptographic protection of data transmission | |
dc.type | Article |
Files
License bundle
1 - 1 of 1