Management efficiency for certain types of plastic waste

dc.citation.epage230
dc.citation.issue4
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage224
dc.contributor.affiliationOdessa State Environmental University
dc.contributor.authorMykhailenko, Vladyslav
dc.contributor.authorShelinhovskyi, Dmytro
dc.contributor.authorSafranov, Tamerlan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-03T08:00:45Z
dc.date.available2024-04-03T08:00:45Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractThe issue of segregating plastic waste from the general stream of municipal solid waste and its recycling and disposal is a pressing environmental and socio-economic problem. Given that existing plastic waste recycling facilities in Ukraine are underutilized and partially operate on imported raw materials, the problem of separating and processing certain types of plastic waste from Ukraine's overall solid waste flow is extremely urgent. Plastic wastes are categorized by disposal complexity into three groups: 1.With good properties (clean, sorted, easily disposed of, and up to 90% of similar materials can be used during recycling); 2. With medium properties (containing a certain amount of pollutants, that require sorting, and their processing involves additional costs such as selection, washing, etc., resulting in only 20-30% of their initial quantity being recycled); 3. Difficult-to-dispose wastes (heavily contaminated and mixed, their processing is often not cost-effective). Polyethylene is one of the most common types of plastic wastes in Ukraine, accounting for 34% of all plastic waste. It was discovered that low-pressure or high-density polyethylene is one of the most marketable types of secondary raw materials in Ukraine, making the separation and collection of this type of plastic waste economically beneficial. The aim of the study is to justify the possibilities of extracting and disposing of plastic waste from the flow of municipal solid wastes in specific cities of Ukraine. This has been implemented by the public organization "City of the Future" in partnership with the Odesa State Environmental University.
dc.format.extent224-230
dc.format.pages7
dc.identifier.citationMykhailenko V. Management efficiency for certain types of plastic waste / Vladyslav Mykhailenko, Dmytro Shelinhovskyi, Tamerlan Safranov // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 224–230.
dc.identifier.citationenMykhailenko V. Management efficiency for certain types of plastic waste / Vladyslav Mykhailenko, Dmytro Shelinhovskyi, Tamerlan Safranov // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 4. — P. 224–230.
dc.identifier.doidoi.org/10.23939/ep2023.04.224
dc.identifier.issn2414-5950
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61651
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 4 (8), 2023
dc.relation.ispartofEnvironmental Problems, 4 (8), 2023
dc.relation.referencesBlettler, M.C., Ulla, M. A., Rabuffetti, A. P., & Garello, N. (2017). Plastic pollution in freshwater ecosystems: macro-, meso-, and microplastic debris in a floodplain lake. Environmental Monitoring and Assessment, 189. doi: https://doi.org/10.1007/s10661-017-6305-8
dc.relation.referencesBouwmeester, H., Hollman, P.C., & Peters, R. J. (2015). Potential health impacts of environmental released micro- and nanoplastics in the human food chain production chain: experiences from nanotoxicity. Environmental Science and Technology, 49(15), 8932-8947. doi: https://doi.org/10.1021/acs.est.5b01090
dc.relation.referencesHe, D., Luo, Y., Shibo Lu, Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172. doi: https://doi.org/10.1016/j.trac.2018.10.006
dc.relation.referencesDelangiz, N., Aliyar, S., Pashapoor, N., Nobaharan K., Asgari Lajayer, B., & Rodríguez-Coutoe, S. (2022). Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges?. Chemosphere, 294, 133709. doi: https://doi.org/10.1016/j.chemosphere.2022.133709
dc.relation.referencesEriksen, M., Lebreton, L.C.M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS One, 9(12), е111913. doi: https://doi.org/10.1371/journal.pone.0111913
dc.relation.referencesGeyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 1700782. doi: https://doi.org/10.1126/sciadv.1700782
dc.relation.referencesHuang Y., Liu, Q., Jia, W., Yan C., & Wang, J. (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260, 114096. doi: https://doi.org/10.1016/j.envpol.2020.114096
dc.relation.referencesKhalid, N., Aqeel, M., & Noman, A. (2020). Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267, 115653. doi: https://doi.org/10.1016/j.envpol.2020.115653
dc.relation.referencesMinistry of Development of Communities and Territories of Ukraine (2023). State of the field of household waste management in Ukraine for 2021. Official website of the Ministry. Retrieved from http://surl.li/cxhpp
dc.relation.referencesPlastics Europe (2021). Plastics - the Facts 2021 - an Analysis of European Plastics Production, Demand and Waste Data. Retrieved from https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/
dc.relation.referencesPlastics Europe (2022). Plastics - the Facts 2022 - an Analysis of European Plastics Production, Demand and Waste Data. Retrieved from Safranov, T. A., Berlinskyi, M. A., & Zmienko, D. M. (2020). Plastic from solid household waste in the coastal zone of the northwestern Black Sea coast as a component of marine litter. Bulletin of Kharkiv National University named after V. N. Karazin, series "Ecology", 23, 57-66. doi: https://doi.org/10.26565/1992-4259-2020-23-06
dc.relation.referencesShanina, T. P., Seifullina, I. Y., & Kushnyreva, V. O (2015). Ecological and economic justification of the choice of the method of handling plastic mass waste. ONU Bulletin Chemistry, 20, 2(54), 49-60. Retrieved from http://surl.li/dfwdc
dc.relation.referencesSurendran, U., Jayakumar, M., Raja, P., & Gopinath G., & Chellam, P. V. (2023). Microplastics in terrestrial ecosystem: Sources and migration in soil environment. Chemosphere, 318, 137946. doi: https://doi.org/10.1016/j.chemosphere.2023.137946
dc.relation.referencesVTORMA Odesa (2023). Official site. Retrieved from http://vtormaodessa.com.ua/contacts
dc.relation.referencesWang, W., Ge, J., & Yu, X. (2020). Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of the Total Environment, 708, 134841. doi: https://doi.org/10.1016/j.scitotenv.2019.134841
dc.relation.referencesWright S. L., & Kelly, F. J. (2017). Plastic and human health: a micro issue?. Environmental Science and Technology, 51(12), 6634-6647. doi: https://doi.org/10.1021/acs.est.7b00423
dc.relation.referencesenBlettler, M.C., Ulla, M. A., Rabuffetti, A. P., & Garello, N. (2017). Plastic pollution in freshwater ecosystems: macro-, meso-, and microplastic debris in a floodplain lake. Environmental Monitoring and Assessment, 189. doi: https://doi.org/10.1007/s10661-017-6305-8
dc.relation.referencesenBouwmeester, H., Hollman, P.C., & Peters, R. J. (2015). Potential health impacts of environmental released micro- and nanoplastics in the human food chain production chain: experiences from nanotoxicity. Environmental Science and Technology, 49(15), 8932-8947. doi: https://doi.org/10.1021/acs.est.5b01090
dc.relation.referencesenHe, D., Luo, Y., Shibo Lu, Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172. doi: https://doi.org/10.1016/j.trac.2018.10.006
dc.relation.referencesenDelangiz, N., Aliyar, S., Pashapoor, N., Nobaharan K., Asgari Lajayer, B., & Rodríguez-Coutoe, S. (2022). Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges?. Chemosphere, 294, 133709. doi: https://doi.org/10.1016/j.chemosphere.2022.133709
dc.relation.referencesenEriksen, M., Lebreton, L.C.M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS One, 9(12), e111913. doi: https://doi.org/10.1371/journal.pone.0111913
dc.relation.referencesenGeyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 1700782. doi: https://doi.org/10.1126/sciadv.1700782
dc.relation.referencesenHuang Y., Liu, Q., Jia, W., Yan C., & Wang, J. (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260, 114096. doi: https://doi.org/10.1016/j.envpol.2020.114096
dc.relation.referencesenKhalid, N., Aqeel, M., & Noman, A. (2020). Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267, 115653. doi: https://doi.org/10.1016/j.envpol.2020.115653
dc.relation.referencesenMinistry of Development of Communities and Territories of Ukraine (2023). State of the field of household waste management in Ukraine for 2021. Official website of the Ministry. Retrieved from http://surl.li/cxhpp
dc.relation.referencesenPlastics Europe (2021). Plastics - the Facts 2021 - an Analysis of European Plastics Production, Demand and Waste Data. Retrieved from https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/
dc.relation.referencesenPlastics Europe (2022). Plastics - the Facts 2022 - an Analysis of European Plastics Production, Demand and Waste Data. Retrieved from Safranov, T. A., Berlinskyi, M. A., & Zmienko, D. M. (2020). Plastic from solid household waste in the coastal zone of the northwestern Black Sea coast as a component of marine litter. Bulletin of Kharkiv National University named after V. N. Karazin, series "Ecology", 23, 57-66. doi: https://doi.org/10.26565/1992-4259-2020-23-06
dc.relation.referencesenShanina, T. P., Seifullina, I. Y., & Kushnyreva, V. O (2015). Ecological and economic justification of the choice of the method of handling plastic mass waste. ONU Bulletin Chemistry, 20, 2(54), 49-60. Retrieved from http://surl.li/dfwdc
dc.relation.referencesenSurendran, U., Jayakumar, M., Raja, P., & Gopinath G., & Chellam, P. V. (2023). Microplastics in terrestrial ecosystem: Sources and migration in soil environment. Chemosphere, 318, 137946. doi: https://doi.org/10.1016/j.chemosphere.2023.137946
dc.relation.referencesenVTORMA Odesa (2023). Official site. Retrieved from http://vtormaodessa.com.ua/contacts
dc.relation.referencesenWang, W., Ge, J., & Yu, X. (2020). Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of the Total Environment, 708, 134841. doi: https://doi.org/10.1016/j.scitotenv.2019.134841
dc.relation.referencesenWright S. L., & Kelly, F. J. (2017). Plastic and human health: a micro issue?. Environmental Science and Technology, 51(12), 6634-6647. doi: https://doi.org/10.1021/acs.est.7b00423
dc.relation.urihttps://doi.org/10.1007/s10661-017-6305-8
dc.relation.urihttps://doi.org/10.1021/acs.est.5b01090
dc.relation.urihttps://doi.org/10.1016/j.trac.2018.10.006
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2022.133709
dc.relation.urihttps://doi.org/10.1371/journal.pone.0111913
dc.relation.urihttps://doi.org/10.1126/sciadv.1700782
dc.relation.urihttps://doi.org/10.1016/j.envpol.2020.114096
dc.relation.urihttps://doi.org/10.1016/j.envpol.2020.115653
dc.relation.urihttp://surl.li/cxhpp
dc.relation.urihttps://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/
dc.relation.urihttps://doi.org/10.26565/1992-4259-2020-23-06
dc.relation.urihttp://surl.li/dfwdc
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2023.137946
dc.relation.urihttp://vtormaodessa.com.ua/contacts
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2019.134841
dc.relation.urihttps://doi.org/10.1021/acs.est.7b00423
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Mykhailenko V., Shelinhovskyi D., Safranov T., 2023
dc.subjectplastic waste
dc.subjectlow-pressure polyethylene or highdensity polyethylene
dc.subjectwaste management
dc.subjectsecondary raw material
dc.subjectmicroplastics
dc.titleManagement efficiency for certain types of plastic waste
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v8n4_Mykhailenko_V-Management_efficiency_224-230.pdf
Size:
353.85 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v8n4_Mykhailenko_V-Management_efficiency_224-230__COVER.png
Size:
1.16 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: