On energy balance of the tectonosphere
Date
2023-02-28
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Lviv Politechnic Publishing House
Abstract
Мета роботи – уточнення та доповнення енергетичного балансу тектоносфери Землі шляхом теплового моделювання. Методика включає детальний комплексний аналіз теплогенерації в корі та верхній мантії впродовж усієї вивченої геологічної історії Землі за 4,2 млрд років. Результати. Узагальнено експериментальні дані про радіогенну теплогенерацію в корі та верхній мантії Землі. Встановлено необхідність окремого розгляду теплового балансу для регіонів з різними ендогенними режимами на платформах, геосинкліналях та океанах. Середні величини теплогенерації у корі становлять близько 0.4-0.5 мкВт/м3, у верхній мантії – 0.04, 0.06 та 0.08 мкВт/м3 відповідно. При врахуванні потужності твердої кори (близько 40 км під платформами та геосинкліналями та близько 6 км під океанами) та верхньої мантії (430-460 км) виявляється практичний збіг кількості джерел під усіма регіонами. Розподілені вони по-різному. Це веде до різних варіантів геологічної історії. Можна припустити, що радіогенні джерела тепла інтенсивністю близько 0.02 мкВт/м3 є у перехідній зоні до нижньої мантії та в нижній мантії приблизно до 1100 км. На більшій глибині в оболонці (всієї маси Землі за межами ядра) та ядрі джерела відсутні. Для платформ розрахований енергетичний баланс тектоносфери. За 3.6 млрд. років (період, протягом якого можна досить точно описати геологічну історію), тепловим потоком винесено близько 73.5·1014 Дж/м2. Кондуктивний тепловий потік за цей час виніс 59.5·1014 Дж/м2. Різниця точно відповідає потребам усіх активних процесів цього періоду. Збігаються й експериментальні дати подій із розрахованими за теорією (частина з яких – уперше). Для фанерозойських геосинкліналей такий контроль також частково виконано. Незалежно визначена еволюція масового потоку (що також має практичне значення) в геологічній історії узгоджується з розрахунковими значеннями. Наукова новизна. Для контролю достовірності аналізу енергетичного балансу тектоносфери Землі автором залучалися незалежно встановлені (за геотермометрами) розподіли температур у корі та верхній мантії, відомості про глибини і температури покрівлі вогнищ магматизму, про розподіл швидкостей поздовжніх сейсмічних хвиль у верхній мантії та інші відомості. Практична значущість. Результати досліджень дадуть можливість надійніше оцінювати рівень та особливості сейсмічної небезпеки для фанерозойських сейсмоактивних зон України.
Purpose of this work is to refine and complete the energy balance of the Earth's tectonosphere by thermal modeling. The methodology includes a detailed comprehensive analysis of heat generation in the crust and upper mantle throughout the studied geological history of the Earth for 4.2 billion years. Results. Experimental data on radiogenic heat generation in the Earth's crust and upper mantle are summarized. The need for a separate consideration of the heat balance for regions with different endogenous regimes on platforms, in geosynclines and oceans has been established. The average values of heat generation in the crust are about 0.4–0.5 µW/m3. In the upper mantle they are 0.04, 0.06, and 0.08 µW/m3, respectively. When taking into account the thicknesses of the solid crust (about 40 km under the platforms and geosynclines and about 6 km under the oceans) and the upper mantle (430-460 km), almost the same number of sources is found under all regions. They are distributed differently. This leads to different variants of geological history. It can be assumed that there are radiogenic heat sources with an intensity of about 0.02 μW/m3 in the transition zone to the lower mantle and in the lower mantle up to about 1100 km. At greater depths in the shell (the total mass of the Earth outside the core) and core, there are no sources. The energy balance of the tectonosphere is calculated for the platforms. Over 3.6 billion years (the period over which it is possible to describe the geological history quite accurately), about 73.5·1014 J/m2 has been carried out by the heat flow. The conductive heat flow during this time carried out 59.5·1014J/m2. The difference corresponds exactly to the needs of all active processes of this period. Originality. The experimental dates of the events also coincide with those calculated by the theory (some of which are for the first time). Practical significance. For the Phanerozoic geosynclines, such control has also been partially performed. The independently determined evolution of the mass flow (which is also of practical importance) in the geological history also agrees with the calculated values.
Purpose of this work is to refine and complete the energy balance of the Earth's tectonosphere by thermal modeling. The methodology includes a detailed comprehensive analysis of heat generation in the crust and upper mantle throughout the studied geological history of the Earth for 4.2 billion years. Results. Experimental data on radiogenic heat generation in the Earth's crust and upper mantle are summarized. The need for a separate consideration of the heat balance for regions with different endogenous regimes on platforms, in geosynclines and oceans has been established. The average values of heat generation in the crust are about 0.4–0.5 µW/m3. In the upper mantle they are 0.04, 0.06, and 0.08 µW/m3, respectively. When taking into account the thicknesses of the solid crust (about 40 km under the platforms and geosynclines and about 6 km under the oceans) and the upper mantle (430-460 km), almost the same number of sources is found under all regions. They are distributed differently. This leads to different variants of geological history. It can be assumed that there are radiogenic heat sources with an intensity of about 0.02 μW/m3 in the transition zone to the lower mantle and in the lower mantle up to about 1100 km. At greater depths in the shell (the total mass of the Earth outside the core) and core, there are no sources. The energy balance of the tectonosphere is calculated for the platforms. Over 3.6 billion years (the period over which it is possible to describe the geological history quite accurately), about 73.5·1014 J/m2 has been carried out by the heat flow. The conductive heat flow during this time carried out 59.5·1014J/m2. The difference corresponds exactly to the needs of all active processes of this period. Originality. The experimental dates of the events also coincide with those calculated by the theory (some of which are for the first time). Practical significance. For the Phanerozoic geosynclines, such control has also been partially performed. The independently determined evolution of the mass flow (which is also of practical importance) in the geological history also agrees with the calculated values.
Description
Keywords
радіогенна теплогенерація, кондуктивний і конвективний теплообмін, активні процеси в тектоносфері, термічна історія, radiogenic heat generation, conductive and convective heat transfer, active processes in the tectonosphere, thermal history
Citation
Gordienko V. On energy balance of the tectonosphere / V. Gordienko // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2023. — No 2 (35). — P. 62–71.