Chemical synthesis of solid solutions of mercury sulfide-selenide films in the presence of sodium tartrate

dc.citation.epage26
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage21
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСозанський, М. А.
dc.contributor.authorСтаднік, В. Є.
dc.contributor.authorГумінілович, Р. Р.
dc.contributor.authorСірик, К. М.
dc.contributor.authorШаповал, П. Й.
dc.contributor.authorSozanskyi, M. A.
dc.contributor.authorStadnik, V. Ye.
dc.contributor.authorGuminilovych, R. R.
dc.contributor.authorSiryk, K. M.
dc.contributor.authorShapoval, P. Yo.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T08:00:04Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractПлівкові тверді розчини сульфіду-селеніду ртуті (HgS1–xSex) синтезовано на скляних підкладках методом хімічного осадження у ванні. Виконано теоретичні розрахунки граничних умов утворення HgS і HgSe у системі ртуть – тартрат – тіосечовина – селеносульфат. Граничні умови HgS1–xSex визначено областю перекриття побудованих зон утворення HgS і HgSe. Рентгенодифракційний та елементний аналіз показав, що отримані плівки є однофазними і складаються із твердих розчинів заміщення HgS1–xSex у модифікації цинкової обманки. Досліджено вплив концентрації Na2SeSO3 на ступінь заміщення S-Se, а також на оптичні та морфологічні властивості плівок HgS1–xSex.
dc.description.abstractSolid solutions films of mercury sulfide-selenide (HgS1–xSex) were synthesized on glass substrates by the chemical bath deposition method. Theoretical calculations of the boundary conditions for the HgS and HgSe formation in the mercury-tartrate-thiourea-selenosulfate system were made. The boundary conditions of HgS1–xSex were defined by the overlap area between the constructed HgS and HgSe formation zones. The X-ray diffraction and elemental analysis showed that the obtained films are single-phase and consist of HgS1–xSex substitutional solid solutions in zincblende modification. The effect of Na2SeSO3 concentration on the degree of S-Se substitution, as well as on the optical and morphological properties of HgS1–xSex films, was investigated.
dc.format.extent21-26
dc.format.pages6
dc.identifier.citationChemical synthesis of solid solutions of mercury sulfide-selenide films in the presence of sodium tartrate / M. A. Sozanskyi, V. Ye. Stadnik, R. R. Guminilovych, K. M. Siryk, P. Yo. Shapoval // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 21–26.
dc.identifier.citationenChemical synthesis of solid solutions of mercury sulfide-selenide films in the presence of sodium tartrate / M. A. Sozanskyi, V. Ye. Stadnik, R. R. Guminilovych, K. M. Siryk, P. Yo. Shapoval // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 21–26.
dc.identifier.doidoi.org/10.23939/ctas2024.01.021
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111754
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Mane, R. S., & Lokhande, C. D. (2000). Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics, 65, 1-31. DOI: https://doi.org/10.1016/s0254-0584(00)00217-0
dc.relation.references2. Pawar, S. M., Pawar, B. S., Kim, J. H., Joo, O.-S., & Lokhande, C. D. (2011). Recent status of chemical bath deposited metal chalcogenide and Metal Oxide Thin Films. Current Applied Physics, 11, 117-161. DOI: https://doi.org/10.1016/j.cap.2010.07.007
dc.relation.references3. Deposition of metal sulphide thin films by chemical bath deposition technique: Review. (2021). International Journal of Thin Films Science and Technology, 10, 45-57. DOI: https://doi.org/10.18576/ijtfst/100108
dc.relation.references4. Kraus, W., & Nolze, G. (1996). Powder cell - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301-303. DOI: https://doi.org/10.1107/s0021889895014920
dc.relation.references5. Raval, A. V., Shaikh, I. A., Jain, V. M., Shastri, N. M., Patel, P. B., Saini, L. K., & Shah, D. V. (2020). Deposition and characterization of indium selenide thin films for opto-electronic devices. Journal of Nano- and Electronic Physics, 12, 02010. DOI: https://doi.org/10.21272/jnep.12(2).02010
dc.relation.references6. Shapoval, P., Sozanskyi, M., Yatchyshyn, I., Kulyk, B., Shpotyuk, M., & Gladyshevskii, R. (2016). The effect of different complexing agents on the properties of zinc sulfide thin films deposited from aqueous solutions. Chemistry & Chemical Technology, 10, 317-323. DOI: https://doi.org/10.23939/chcht10.03.317
dc.relation.references7. Sozanskyi, M. A., Stadnik, V. E., Chaykivska, R. T., Shapoval, P. Y., Yatchyshyn, Y. Y., & Vasylechko, L. O. (2018). The effect of different complexing agents on the properties of mercury selenide films deposited from aqueous solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 69-76.
dc.relation.references8. Zheng, Z., Zhang, M., Xiao, Y., Wei, L., & Li, C. (2017). Effect of CYS, GSH, and pH on Mercury release from Tibetan medicine Zuotai, β-HgS, and α-HgS in artificial gastrointestinal juices. Biological Trace Element Research, 184, 536-545. DOI: https://doi.org/10.1007/s12011-017-1185-x
dc.relation.references9. Donald R. B. (2004). Public Data Resource: NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows. National Institute of Standards and Technology. Retrieved from https://doi.org/10.18434/M32154
dc.relation.references10. Arencibia, A., Aguado, J., & Arsuaga, J. M. (2010). Regeneration of thiol-functionalized mesostructured silica adsorbents of Mercury. Applied Surface Science, 256, 5453-5457. DOI: https://doi.org/10.1016/j.apsusc.2009.12.139
dc.relation.references11. Liu, Z., Peng, B., Chai, L., Liu, H., Yang, S., Yang, B., Xiang, K., Liu, C., & Wang, D. (2017). Selective removal of elemental mercury from high-concentration SO2 flue gas by thiourea solution and investigation of mechanism. Industrial & Engineering Chemistry Research, 56, 4281-4287. DOI: https://doi.org/10.1021/acs.iecr.7b00044
dc.relation.references12. Thiodjio Sendja, B., Tchana Kamgne, D., Aquilanti, G., Olivi, L., & Plaisier, J. R. (2018). Low-range thermal investigation of Zincblende-Type ZnS by combined extended X-ray absorption fine structure and X-ray diffraction techniques. Physica B: Condensed Matter, 545, 481-490. DOI: https://doi.org/10.1016/j.physb.2018.06.005
dc.relation.references13. Moreno-Close, E. R., Martínez-Benítez, A., Meléndez-Lira, M., Ceja-Andrade, I., Chávez-Chávez, A., Pérez-Centeno, A., Quiñones-Galván, J. G., & Santana-Aranda, M. A. (2020). Mercury sulfide thin film deposition using [HgI4]2− complex ions. Journal of Materials Science: Materials in Electronics, 31, 4611-4617. https://doi.org/10.1007/s10854-020-03013-6
dc.relation.references14. Sozanskyi, M. A., Siryk, K. M., Shapoval, P. Yo., Huminilovych, R. R., Stadnik, V. E., & Laruk, M. M. (2023). Chemical deposition of multilayer HgS Films. Journal of Nano- and Electronic Physics, 15, 06010. DOI: https://doi.org/10.21272/jnep.15(6).06010
dc.relation.referencesen1. Mane, R. S., & Lokhande, C. D. (2000). Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics, 65, 1-31. DOI: https://doi.org/10.1016/s0254-0584(00)00217-0
dc.relation.referencesen2. Pawar, S. M., Pawar, B. S., Kim, J. H., Joo, O.-S., & Lokhande, C. D. (2011). Recent status of chemical bath deposited metal chalcogenide and Metal Oxide Thin Films. Current Applied Physics, 11, 117-161. DOI: https://doi.org/10.1016/j.cap.2010.07.007
dc.relation.referencesen3. Deposition of metal sulphide thin films by chemical bath deposition technique: Review. (2021). International Journal of Thin Films Science and Technology, 10, 45-57. DOI: https://doi.org/10.18576/ijtfst/100108
dc.relation.referencesen4. Kraus, W., & Nolze, G. (1996). Powder cell - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301-303. DOI: https://doi.org/10.1107/s0021889895014920
dc.relation.referencesen5. Raval, A. V., Shaikh, I. A., Jain, V. M., Shastri, N. M., Patel, P. B., Saini, L. K., & Shah, D. V. (2020). Deposition and characterization of indium selenide thin films for opto-electronic devices. Journal of Nano- and Electronic Physics, 12, 02010. DOI: https://doi.org/10.21272/jnep.12(2).02010
dc.relation.referencesen6. Shapoval, P., Sozanskyi, M., Yatchyshyn, I., Kulyk, B., Shpotyuk, M., & Gladyshevskii, R. (2016). The effect of different complexing agents on the properties of zinc sulfide thin films deposited from aqueous solutions. Chemistry & Chemical Technology, 10, 317-323. DOI: https://doi.org/10.23939/chcht10.03.317
dc.relation.referencesen7. Sozanskyi, M. A., Stadnik, V. E., Chaykivska, R. T., Shapoval, P. Y., Yatchyshyn, Y. Y., & Vasylechko, L. O. (2018). The effect of different complexing agents on the properties of mercury selenide films deposited from aqueous solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 69-76.
dc.relation.referencesen8. Zheng, Z., Zhang, M., Xiao, Y., Wei, L., & Li, C. (2017). Effect of CYS, GSH, and pH on Mercury release from Tibetan medicine Zuotai, b-HgS, and α-HgS in artificial gastrointestinal juices. Biological Trace Element Research, 184, 536-545. DOI: https://doi.org/10.1007/s12011-017-1185-x
dc.relation.referencesen9. Donald R. B. (2004). Public Data Resource: NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows. National Institute of Standards and Technology. Retrieved from https://doi.org/10.18434/M32154
dc.relation.referencesen10. Arencibia, A., Aguado, J., & Arsuaga, J. M. (2010). Regeneration of thiol-functionalized mesostructured silica adsorbents of Mercury. Applied Surface Science, 256, 5453-5457. DOI: https://doi.org/10.1016/j.apsusc.2009.12.139
dc.relation.referencesen11. Liu, Z., Peng, B., Chai, L., Liu, H., Yang, S., Yang, B., Xiang, K., Liu, C., & Wang, D. (2017). Selective removal of elemental mercury from high-concentration SO2 flue gas by thiourea solution and investigation of mechanism. Industrial & Engineering Chemistry Research, 56, 4281-4287. DOI: https://doi.org/10.1021/acs.iecr.7b00044
dc.relation.referencesen12. Thiodjio Sendja, B., Tchana Kamgne, D., Aquilanti, G., Olivi, L., & Plaisier, J. R. (2018). Low-range thermal investigation of Zincblende-Type ZnS by combined extended X-ray absorption fine structure and X-ray diffraction techniques. Physica B: Condensed Matter, 545, 481-490. DOI: https://doi.org/10.1016/j.physb.2018.06.005
dc.relation.referencesen13. Moreno-Close, E. R., Martínez-Benítez, A., Meléndez-Lira, M., Ceja-Andrade, I., Chávez-Chávez, A., Pérez-Centeno, A., Quiñones-Galván, J. G., & Santana-Aranda, M. A. (2020). Mercury sulfide thin film deposition using [HgI4]2− complex ions. Journal of Materials Science: Materials in Electronics, 31, 4611-4617. https://doi.org/10.1007/s10854-020-03013-6
dc.relation.referencesen14. Sozanskyi, M. A., Siryk, K. M., Shapoval, P. Yo., Huminilovych, R. R., Stadnik, V. E., & Laruk, M. M. (2023). Chemical deposition of multilayer HgS Films. Journal of Nano- and Electronic Physics, 15, 06010. DOI: https://doi.org/10.21272/jnep.15(6).06010
dc.relation.urihttps://doi.org/10.1016/s0254-0584(00)00217-0
dc.relation.urihttps://doi.org/10.1016/j.cap.2010.07.007
dc.relation.urihttps://doi.org/10.18576/ijtfst/100108
dc.relation.urihttps://doi.org/10.1107/s0021889895014920
dc.relation.urihttps://doi.org/10.21272/jnep.12(2).02010
dc.relation.urihttps://doi.org/10.23939/chcht10.03.317
dc.relation.urihttps://doi.org/10.1007/s12011-017-1185-x
dc.relation.urihttps://doi.org/10.18434/M32154
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2009.12.139
dc.relation.urihttps://doi.org/10.1021/acs.iecr.7b00044
dc.relation.urihttps://doi.org/10.1016/j.physb.2018.06.005
dc.relation.urihttps://doi.org/10.1007/s10854-020-03013-6
dc.relation.urihttps://doi.org/10.21272/jnep.15(6).06010
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectсульфід ртуті
dc.subjectселенід ртуті
dc.subjectнапівпровідникові плівки
dc.subjectтвердий розчин
dc.subjectхімічний синтез
dc.subjectрентгенівська дифракція
dc.subjectоптична спектроскопія
dc.subjectmercury sulfide
dc.subjectmercury selenide
dc.subjectsemiconductor films
dc.subjectsolid solution
dc.subjectchemical synthesis
dc.subjectX-ray diffraction
dc.subjectoptical spectroscopy
dc.titleChemical synthesis of solid solutions of mercury sulfide-selenide films in the presence of sodium tartrate
dc.title.alternativeХімічний синтез плівкових твердих розчинів сульфіду-селеніду ртуті в присутності тартрату натрію
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Sozanskyi_M_A-Chemical_synthesis_of_21-26.pdf
Size:
945.98 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Sozanskyi_M_A-Chemical_synthesis_of_21-26__COVER.png
Size:
497.91 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: