The effect of crumb rubber on the properties of modified portland cement systems

dc.citation.epage54
dc.citation.issue1
dc.citation.journalTitleТеорія і практика будівництва
dc.citation.spage49
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМарущак, У. Д.
dc.contributor.authorСидор, Н. І.
dc.contributor.authorЧаус, Р. Т.
dc.contributor.authorMarushchak, Uliana
dc.contributor.authorSydor, Nazar
dc.contributor.authorChaus, Rostyslav
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-23T06:11:58Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractБетон залишається основним матеріалом для різних видів капітального будівництва, що зумовлено його універсальністю та довговічністю. Виробництво та застосування бетону в різних технологіях будівництва зростає щороку, що призводить до надмірного видобування та споживання природної сировини. Вирішення цієї проблеми вбачаємо в площині використання твердих відходів як наповнювачів і заповнювачів у бетоні або пошуку екологічно чистішої сировини. Більшість продуктів, отриманих із каучуку, після закінчення терміну використання викидають як відходи, закопують на звалищах або спалюють. Для природного розкладання таких матеріалів потрібно багато років, що зумовлено складною зшитою структурою і наявністю добавок, які додають під час виробництва для продовження терміну служби гуми. Використання відпрацьованих шин у вигляді заповнювачів для виробництва інноваційних композитів у будівництві є перспективним екологічно чистим рішенням, що відповідає концепції сталого розвитку та циркулярної економіки. Використання гуми в модифікованих портландцементних системах пришвидшує процеси раннього структуроутворення. Введення гуми змінює опір руйнуванню цементних систем. У разі введення у систему гуми спостерігалося зменшення міцності, що зумовлено еластичністю гуми. Зразки без гуми виявляють високу механічну стійкість, але характеризуються крихкістю, швидким дробленням і руйнуванням матеріалу після появи тріщини, що призводить до раптового руйнування. Зразки, що містять гумову крихту, демонструють порівняно низьку міцність на стиск, але характеризуються пружною поведінкою. У них спостерігаються повільне фрагментування та повільне руйнування матеріалу після появи тріщин. Портландцементні системи з гумою характеризуються додатковим опором після досягнення напруження руйнування, що пов’язано з мостиковим ефектом частинок гуми.
dc.description.abstractThe use of rubber crumb from used tires in concrete as a partial replacement of natural aggregates is an ecologically oriented direction of their utilization. When rubber crumb was added to Portland cement, a decrease in strength was observed. Modification of rubber-containing Portland cement systems with a complex organic and mineral additive makes it possible to compensate for the loss of compressive strength and provide increased impact strength. Samples without rubber show high strength but are characterized by fragility and sudden destruction of the material. Samples containing rubber show relatively low mechanical resistance but also exhibit elastic behavior where slow fragmentation and slow failure of the material after crack initiation are observed. They also are characterized by additional load resistance after reaching the failure stress, which is associated with the bridging effect of rubber particles.
dc.format.extent49-54
dc.format.pages6
dc.identifier.citationMarushchak U. The effect of crumb rubber on the properties of modified portland cement systems / Uliana Marushchak, Nazar Sydor, Rostyslav Chaus // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 49–54.
dc.identifier.citationenMarushchak U. The effect of crumb rubber on the properties of modified portland cement systems / Uliana Marushchak, Nazar Sydor, Rostyslav Chaus // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 49–54.
dc.identifier.doidoi.org/10.23939/jtbp2024.01.049
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111478
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія і практика будівництва, 1 (6), 2024
dc.relation.ispartofTheory and Building Practice, 1 (6), 2024
dc.relation.referencesHabert, G., Miller, S.A., John, V.M., Provis, J. L., Favier, A., Horvath A., & Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth Environment, 1, 559–573. https://doi.org/10.1038/s43017-020-0093-3.
dc.relation.referencesTorres, A., Simoni, M. U., Keiding, J. K., Müller, D. B., Ermgassen, S. O. S. E., Liu, J. … Lambin, E. F. (2021). Sustainability of the global sand system in the Anthropocene. One Earth, 4, 5, 639–650. https://doi.org/10.1016/j.oneear.2021.04.011.
dc.relation.referencesTavakoli, D., Hashempour, M., & Heidari, А. (2018). Use of waste materials in concrete: A review. Pertanika Journal of Science and Technology, 26, 499–522. http://www.pertanika.upm.edu.my/pjst/browse/regularissue?article=JST-0849-2017
dc.relation.referencesMomotaz, H., Rahman, M.M., Karim, M., Zhuge, Y., Ma, X., & Levett, P. (2023). Comparative study on properties of kerb concrete made from recycled materials and related carbon footprint. Journal of Building Engineering, 72, 106484. 10.1016/j.jobe.2023.106484.
dc.relation.referencesAl Adwan, J., & Alzubi, Y. (2023). Rubber-based solid waste management as a partial replacement of aggregates in concrete: Advances and recent trends. AIP Conference Proceedings, 2847 (1), 020004. https://doi.org/10.1063/5.0166883.
dc.relation.referencesAbdelmonem, A., El-Feky, M. S., El-Sayed, A. R., & Kohail, M. (2019). Performance of high strength concrete containing recycled rubber. Construction and Building Materials, 227, 116660. https://doi.org/10.1016/j.conbuildmat.2019.08.041.
dc.relation.referencesRashad, A. M. (2016). A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. International Journal of Sustainable Built Environment, 5, 46-82. https://doi.org/10.1016/j.ijsbe.2015.11.003.
dc.relation.referencesRahman, M. M., Usman, M., & Al-Ghalib, A. A. (2012). Fundamental properties of rubber modified self compacting concrete (RMSCC). Construction and Building Materials, 36, 630–637. https://doi.org/10.1016/j.conbuildmat.2012.04.116
dc.relation.referencesYoussf, O., Mills, J. E., & Hassanli, R. (2016). Assessment of the mechanical performance of crumb rubber concrete. Construction and Building Materials, 125, 175–183. DOI: 10.1016/j.conbuildmat.2016.08.040.
dc.relation.referencesSiddika, A., Mamun, M., Alyousef, R., Amran, M., Aslani, F., & Alabduljabbar, H. (2019). Properties and utilizations of waste tire rubber in concrete: A review. Construction and Building Materials, 224, 711–731. 10.1016/j.conbuildmat.2019.07.108.
dc.relation.referencesSofi, A. (2018). Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Shams Engineering Journal, 9, 4, 2691–2700. https://doi.org/10.1016/j.asej.2017.08.007.
dc.relation.referencesBompa, D. V., & Elghazouli, A. Y. (2019). Creep properties of recycled tire rubber concrete. Construction and Building Materials, 209, 126–134. https://doi.org/10.1016/j.conbuildmat.2019.03.127.
dc.relation.referencesCruz, J., Guzmán, C., Mejía, F., Acevedo, B., Cedillo, O., Buen, I., Ocampo, A., & Valencia, H. (2021). Effect of the Substitution of Sand by Rubber of Waste Tires on the Mechanical Properties of Hydraulic Concrete and Exposure to Gamma Radiation. Journal of Minerals and Materials Characterization and Engineering, 9, 245–256. DOI: 10.4236/jmmce.2021.93017.
dc.relation.referencesVilla, B., García, E., Pradena, M., Flores, P., Medina, C., Campos, V., & Urbano, B. (2020). Surface modification of rubber from end-of-life tires for use in concrete: a design of experiments approach. Journal of the Chilean Chemical Society, 65, 4988. DOI: 10.4067/S0717-97072020000404988.
dc.relation.referencesNajim, K. B., & Hall, M. R. (2010). A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC). Construction and Building Materials, 24, 11, 2043–2051. https://doi.org/10.1016/j.conbuildmat.2010.04.056.
dc.relation.referencesMedina, N. F., Garcia, R., Hajirasouliha, I., Pilakoutas, K., Guadagnini, M., & Raffoul, S. (2018). Composites with recycled rubber aggregates: Properties and opportunities in construction. Construction and Building Materials, 188, 884–897. https://doi.org/10.1016/j.conbuildmat.2018.08.069.
dc.relation.referencesPocklington, I., & Kew, R. (2019). Effects on strength of concrete from incremental rubber aggregate replacement by volume. Fifth International Conference on Sustainable Construction Materials and Technologies, 94-107. DOI: 10.18552/2019/IDSCMT5139.
dc.relation.referencesPocklington, I., Kew, H., Donchev, T., & Limbachiya, M. (2015). Compressive strength and mix behaviour of rubberised concrete. 20th International conference of composite materials. https://www.iccm-central.org/Proceedings/ICCM20proceedings/papers/paper-4309-2.pdf
dc.relation.referencesSanytsky, M., Marushchak, U., Olevych, Y., & Novytskyi, Y. (2020). Nano-modified ultra-rapid hardening Portland Cement compositions for high strength concretes. Lecture Notes in Civil Engineering, 47, 392–399. DOI: 10.1007/978-3-030-27011-7_50.
dc.relation.referencesSanytsky, M., Kropyvnytska, T., Нeviuk, I., Sikora, P., & Braichenko, S. (2021). Development of rapidhardening ultra-high strength cementitious composites using superzeolite and N-C-S-H-PCE alkaline nanomodifier. Eastern-European Journal of Enterprise Technologies, 5(6), 62–72. https://doi.org/10.15587/17294061.2021.242813.
dc.relation.referencesMarushchak, U., Sydor, N., Braichenko, S., Margal, I., & Soltysik, R. (2019). Modified fiber reinforced concrete for industrial floors. IOP Conference Series. Materials Science and Engineering, 708, 1, 012094. DOI: 10.1088/1757-899X/708/1/012094.
dc.relation.referencesLothenbach, B., Scrivener, K., & Hooton, R.D. (2011). Supplementary cementitious materials. Cement and concrete research, 41, 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001
dc.relation.referencesJokar, F., Khorram, M., Karimi, G., & Hataf N. (2019). Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite. Construction and Building Materials, 208, 651–658. https://doi.org/10.1016/j.conbuildmat.2019.03.063.
dc.relation.referencesAlgaifi, H. A., Syamsir, A., Baharom, S., Alyami, M., Al-Fakih, A. M., & Anggraini, V. (2023). Development of rubberised cementitious material incorporating graphene nanoplatelets and silica fume. Case Studies in Construction Materials, 19, e02567. https://doi.org/10.1016/j.cscm.2023.e02567.
dc.relation.referencesenHabert, G., Miller, S.A., John, V.M., Provis, J. L., Favier, A., Horvath A., & Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth Environment, 1, 559–573. https://doi.org/10.1038/s43017-020-0093-3.
dc.relation.referencesenTorres, A., Simoni, M. U., Keiding, J. K., Müller, D. B., Ermgassen, S. O. S. E., Liu, J. … Lambin, E. F. (2021). Sustainability of the global sand system in the Anthropocene. One Earth, 4, 5, 639–650. https://doi.org/10.1016/j.oneear.2021.04.011.
dc.relation.referencesenTavakoli, D., Hashempour, M., & Heidari, A. (2018). Use of waste materials in concrete: A review. Pertanika Journal of Science and Technology, 26, 499–522. http://www.pertanika.upm.edu.my/pjst/browse/regularissue?article=JST-0849-2017
dc.relation.referencesenMomotaz, H., Rahman, M.M., Karim, M., Zhuge, Y., Ma, X., & Levett, P. (2023). Comparative study on properties of kerb concrete made from recycled materials and related carbon footprint. Journal of Building Engineering, 72, 106484. 10.1016/j.jobe.2023.106484.
dc.relation.referencesenAl Adwan, J., & Alzubi, Y. (2023). Rubber-based solid waste management as a partial replacement of aggregates in concrete: Advances and recent trends. AIP Conference Proceedings, 2847 (1), 020004. https://doi.org/10.1063/5.0166883.
dc.relation.referencesenAbdelmonem, A., El-Feky, M. S., El-Sayed, A. R., & Kohail, M. (2019). Performance of high strength concrete containing recycled rubber. Construction and Building Materials, 227, 116660. https://doi.org/10.1016/j.conbuildmat.2019.08.041.
dc.relation.referencesenRashad, A. M. (2016). A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. International Journal of Sustainable Built Environment, 5, 46-82. https://doi.org/10.1016/j.ijsbe.2015.11.003.
dc.relation.referencesenRahman, M. M., Usman, M., & Al-Ghalib, A. A. (2012). Fundamental properties of rubber modified self compacting concrete (RMSCC). Construction and Building Materials, 36, 630–637. https://doi.org/10.1016/j.conbuildmat.2012.04.116
dc.relation.referencesenYoussf, O., Mills, J. E., & Hassanli, R. (2016). Assessment of the mechanical performance of crumb rubber concrete. Construction and Building Materials, 125, 175–183. DOI: 10.1016/j.conbuildmat.2016.08.040.
dc.relation.referencesenSiddika, A., Mamun, M., Alyousef, R., Amran, M., Aslani, F., & Alabduljabbar, H. (2019). Properties and utilizations of waste tire rubber in concrete: A review. Construction and Building Materials, 224, 711–731. 10.1016/j.conbuildmat.2019.07.108.
dc.relation.referencesenSofi, A. (2018). Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Shams Engineering Journal, 9, 4, 2691–2700. https://doi.org/10.1016/j.asej.2017.08.007.
dc.relation.referencesenBompa, D. V., & Elghazouli, A. Y. (2019). Creep properties of recycled tire rubber concrete. Construction and Building Materials, 209, 126–134. https://doi.org/10.1016/j.conbuildmat.2019.03.127.
dc.relation.referencesenCruz, J., Guzmán, C., Mejía, F., Acevedo, B., Cedillo, O., Buen, I., Ocampo, A., & Valencia, H. (2021). Effect of the Substitution of Sand by Rubber of Waste Tires on the Mechanical Properties of Hydraulic Concrete and Exposure to Gamma Radiation. Journal of Minerals and Materials Characterization and Engineering, 9, 245–256. DOI: 10.4236/jmmce.2021.93017.
dc.relation.referencesenVilla, B., García, E., Pradena, M., Flores, P., Medina, C., Campos, V., & Urbano, B. (2020). Surface modification of rubber from end-of-life tires for use in concrete: a design of experiments approach. Journal of the Chilean Chemical Society, 65, 4988. DOI: 10.4067/S0717-97072020000404988.
dc.relation.referencesenNajim, K. B., & Hall, M. R. (2010). A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC). Construction and Building Materials, 24, 11, 2043–2051. https://doi.org/10.1016/j.conbuildmat.2010.04.056.
dc.relation.referencesenMedina, N. F., Garcia, R., Hajirasouliha, I., Pilakoutas, K., Guadagnini, M., & Raffoul, S. (2018). Composites with recycled rubber aggregates: Properties and opportunities in construction. Construction and Building Materials, 188, 884–897. https://doi.org/10.1016/j.conbuildmat.2018.08.069.
dc.relation.referencesenPocklington, I., & Kew, R. (2019). Effects on strength of concrete from incremental rubber aggregate replacement by volume. Fifth International Conference on Sustainable Construction Materials and Technologies, 94-107. DOI: 10.18552/2019/IDSCMT5139.
dc.relation.referencesenPocklington, I., Kew, H., Donchev, T., & Limbachiya, M. (2015). Compressive strength and mix behaviour of rubberised concrete. 20th International conference of composite materials. https://www.iccm-central.org/Proceedings/ICCM20proceedings/papers/paper-4309-2.pdf
dc.relation.referencesenSanytsky, M., Marushchak, U., Olevych, Y., & Novytskyi, Y. (2020). Nano-modified ultra-rapid hardening Portland Cement compositions for high strength concretes. Lecture Notes in Civil Engineering, 47, 392–399. DOI: 10.1007/978-3-030-27011-7_50.
dc.relation.referencesenSanytsky, M., Kropyvnytska, T., Neviuk, I., Sikora, P., & Braichenko, S. (2021). Development of rapidhardening ultra-high strength cementitious composites using superzeolite and N-C-S-H-PCE alkaline nanomodifier. Eastern-European Journal of Enterprise Technologies, 5(6), 62–72. https://doi.org/10.15587/17294061.2021.242813.
dc.relation.referencesenMarushchak, U., Sydor, N., Braichenko, S., Margal, I., & Soltysik, R. (2019). Modified fiber reinforced concrete for industrial floors. IOP Conference Series. Materials Science and Engineering, 708, 1, 012094. DOI: 10.1088/1757-899X/708/1/012094.
dc.relation.referencesenLothenbach, B., Scrivener, K., & Hooton, R.D. (2011). Supplementary cementitious materials. Cement and concrete research, 41, 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001
dc.relation.referencesenJokar, F., Khorram, M., Karimi, G., & Hataf N. (2019). Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite. Construction and Building Materials, 208, 651–658. https://doi.org/10.1016/j.conbuildmat.2019.03.063.
dc.relation.referencesenAlgaifi, H. A., Syamsir, A., Baharom, S., Alyami, M., Al-Fakih, A. M., & Anggraini, V. (2023). Development of rubberised cementitious material incorporating graphene nanoplatelets and silica fume. Case Studies in Construction Materials, 19, e02567. https://doi.org/10.1016/j.cscm.2023.e02567.
dc.relation.urihttps://doi.org/10.1038/s43017-020-0093-3
dc.relation.urihttps://doi.org/10.1016/j.oneear.2021.04.011
dc.relation.urihttp://www.pertanika.upm.edu.my/pjst/browse/regularissue?article=JST-0849-2017
dc.relation.urihttps://doi.org/10.1063/5.0166883
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.08.041
dc.relation.urihttps://doi.org/10.1016/j.ijsbe.2015.11.003
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2012.04.116
dc.relation.urihttps://doi.org/10.1016/j.asej.2017.08.007
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.03.127
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2010.04.056
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.08.069
dc.relation.urihttps://www.iccm-central.org/Proceedings/ICCM20proceedings/papers/paper-4309-2.pdf
dc.relation.urihttps://doi.org/10.15587/17294061.2021.242813
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2010.12.001
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.03.063
dc.relation.urihttps://doi.org/10.1016/j.cscm.2023.e02567
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Marushchak U., Sydor N., Chaus R., 2024
dc.subjectгумова крихта
dc.subjectпортландцементна система
dc.subjectсуперпластифікатор
dc.subjectмікрокремнезем
dc.subjectміцність на стиск
dc.subjectударна міцність
dc.subjectcrumb rubber
dc.subjectPortland cement system
dc.subjectsuperplasticizer
dc.subjectmicrosilica
dc.subjectcompressive strength
dc.subjectimpact strength
dc.titleThe effect of crumb rubber on the properties of modified portland cement systems
dc.title.alternativeВплив гумової крихти на властивості модифікованих портландцементних систем
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n1_Marushchak_U-The_effect_of_crumb_rubber_49-54.pdf
Size:
339.76 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n1_Marushchak_U-The_effect_of_crumb_rubber_49-54__COVER.png
Size:
453.58 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: