Застосування нечіткого фільтра частинок для спостереження станів динамічної системи в режимі реального часу

dc.citation.epage26
dc.citation.issue1
dc.citation.journalTitleЕлектроенергетичні та електромеханічні системи
dc.citation.spage18
dc.citation.volume2
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБоровець, Т. В.
dc.contributor.authorBorovets, T.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-05-11T09:20:49Z
dc.date.available2020-05-11T09:20:49Z
dc.date.created2020-01-20
dc.date.issued2020-01-20
dc.description.abstractОднією із ключових проблем реалізації замкнених систем керування є вимірювання усіх станів динамічної системи, яка перебуває у складних навколишніх умовах, де застосування певних видів датчиків є технічно неможливим чи економічно необґрунтованим. Також, у електромеханічних системах існує низка величин, які неможливо безпосередньо виміряти фізичними датчиками. У таких випадках для обчислення невідомих координат вектора стану динамічної системи використовують математичні алгоритми – спостерігачі та естиматори. Одним із найпоширеніших серед алгоритмів спостереження, які використовуються у електромеханічних системах, є фільтр частинок, який дає змогу визначати координати вектора стану нелінійної системи за негауссовим законом розподілу станів та вимірювань. Також, практична цінність алгоритму зумовлена високою нечутливістю до шуму сенсорів та збіжністю при великих початкових відхиленнях оцінених значень станів від реальних величин. Проте, реалізація алгоритму потребує значних обчислювальних витрат, які зумовлені обчисленням великої кількості точок станів, у яких може перебувати динамічна системи. Із метою зменшення обчислювальної складності у статті запропоновано модифікацію фільтра частинок для спостереження координат вектора станів динамічної системи електроприводу колеса електромобіля. Модифікований алгоритм фільтра частинок здійснює перемикання кількості точок під час оцінювання величин координат вектора стану із використанням нечіткої логіки із лише одним нечітким входом, що дає змогу уникнути великої бази правил. Адекватність нечіткого фільтра частинок доведена математичним моделюванням динаміки системи електроприводу колеса електромобіля під час його руху на різних поверхнях. Запропонований алгоритм показав аналогічну точність і менші обчислювальні затрати порівняно із класичним алгоритмом спостереження. Також результати моделювання засвідчили, що модифікований спостерігач незначно впливає на динаміку та статику замкненої системи керування із регулятором за повним вектором стану, на вхід якого подаються координати системи, визначені нечітким фільтром частинок.
dc.description.abstractOne of the key problems in the implementation of closed-loop control systems is to measure all states of a dynamic system, especially, when there are severe environmental conditions. Consequently, the use of certain types of sensors is impossible for technical or economic reasons. Also, in electromechanical systems, there are a lot of values that cannot be directly measured by physical sensors. Thus, mathematical algorithms named as observers and estimators are in use to calculate the states of the dynamic system utilizing math model and available set of sensors. One of the widespread observation algorithms, which are in use in electromechanical systems, is a particle filter which allows to determine the coordinates of the state vector of a nonlinear system with a non-Gaussian law of state distribution and measurements. Also, the practical value of the algorithm is due to the high sensitivity to sensor noise and convergence at large initial deviations of the estimated state values from the real values. However, the implementation of the algorithm requires considerable computational cost, which is caused by the calculation of a large number of state points that may have dynamic systems. In order to reduce the computational complexity, the paper proposes a modification of the particle filter, which was named as fuzzy particle filter. The modified algorithm involves switching the number of particles during the estimation process of the state vector using fuzzy logic with only one fuzzy input. The novel observer was applied to wheel electrical drive to estimate state vector. Mathematical modelling of the dynamics of the wheel electrical drive system when a vehicle is travelling on different surfaces proves the adequacy of the fuzzy particle filter. The proposed algorithm showed similar accuracy and lower computational cost compared to the classical particle filter. The modified observer was also found to have a little effect on the dynamics and static characteristics of a closed-loop control system with a full-state feedback controller while the fuzzy particle filter defines the coordinates of the state vector.
dc.format.extent18-26
dc.format.pages9
dc.identifier.citationБоровець Т. В. Застосування нечіткого фільтра частинок для спостереження станів динамічної системи в режимі реального часу / Т. В. Боровець // Електроенергетичні та електромеханічні системи. — Львів : Видавництво Львівської політехніки, 2020. — Том 2. — № 1. — С. 18–26.
dc.identifier.citationenBorovets T. Application of a fuzzy particle filter to observe a dynamical system states in real time / T. Borovets // Electrical Power and Electromechanical Systems. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 1. — P. 18–26.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/49627
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕлектроенергетичні та електромеханічні системи, 1 (2), 2020
dc.relation.ispartofElectrical Power and Electromechanical Systems, 1 (2), 2020
dc.relation.references1. Сметана І. В., Лозинський А. О. Методи ідентифікації координат стану. Аналіз проблем та шляхи їх вирішення // Вісник Нац. ун-ту “Львівська політехніка”. 2003. № 485: Електроенергетичні та електромеханічні системи. С. 118–125.
dc.relation.references2. Марущак, Я. Ю., Кушнір, А. П. Експериментальні дослідження двомасових електромеханічних систем з урахуванням сил дисипації // Електротехнічні та комп’ютерні системи. 2011. № 3. С. 98–100.
dc.relation.references3. Gordon, N. J., Salmond, D. J., & Smith, A. F. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F-radar and signal processing. 1993. Vol. 140, No. 2, pp. 107–113.
dc.relation.references4. Del Moral, Pierre. “Non Linear Filtering: Interacting Particle Solution” (PDF). Markov Processes and Related Fields. 1996. No. 2 (4). pp. 555–580.
dc.relation.references5. Cheng, Q., Victorino, A. C., and Charara, A. Nonlinear observer of sideslip angle using a particle filter estimation methodology. IFAC Proceedings Volumes. 2011. No. 44(1), pp. 6266–6271.
dc.relation.references6. Dandach, H., Abdallah, F., De Miras, J. and Charara, A. Vehicle dynamics estimation using box particle filter. In 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV). 2012. pp. 118–123.
dc.relation.references7. Ma, J. and Zhao, Q. Robot Visual Servo with Fuzzy Particle Filter. JCP, 2012. No. 7(4), pp. 842–845.
dc.relation.references8. Vantsevich, V., Gorsich, D., Lozynskyy, A., Demkiv, L. and Borovets, T. State Observers for Terrain Mobility Controls: A Technical Analysis. In IFToMM World Congress on Mechanism and Machine Science (Springer, Cham). 2019. pp. 3681–3690.
dc.relation.references9. Fox, D., Thrun, S., & Burgard, W. Probabilistic robotics. MIT Press. 2005.
dc.relation.references10. Gray, J. P., Vantsevich, V. V., Opeiko, A. F., & Hudas, G. R. A Method for Unmanned Ground Wheeled Vehicle Mobility Estimation in Stochastic Terrain Conditions. In Proc. of the 7th Americas Regional Conference of the ISTVS, Tampa, Florida, USA. 2013.
dc.relation.references11. Belousov, B., Ksenevich, T. I., Vantsevich, V., & Naumov, S. An active long-travel, two performance loop control suspension of an open-link locomotion module for off-road applications. SAE Technical Paper. 2014. No 2014-01-2288.
dc.relation.referencesen1. Smetana I. V., Lozynsʹkyy A. O. Metody identyfikatsiyi koordynat stanu. Analiz problem ta shlyakhy yikh vyrishennya. Visnyk Natsionalʹnoho universytetu “Lʹvivsʹka politekhnika”. 2003. No. 485 : Elektroenerhetychni ta elektromekhanichni systemy. S. 118–125.
dc.relation.referencesen2. Marushchak, Ya. Yu., Kushnir, A. P. Eksperymentalʹni doslidzhennya dvomasovykh elektromekhanichnykh system z urakhuvannyam syl dysypatsiyi. Elektrotekhnichni ta kompʹyuterni systemy. 2011. No. 3. S. 98–100.
dc.relation.referencesen3. Gordon, N. J., Salmond, D. J., & Smith, A. F. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F-radar and signal processing. 1993. Vol. 140, No. 2, pp. 107–113.
dc.relation.referencesen4. Del Moral, Pierre. “Non Linear Filtering: Interacting Particle Solution” (PDF). Markov Processes and Related Fields. 1996. No. 2 (4). pp. 555–580.
dc.relation.referencesen5. Cheng, Q., Victorino, A. C., and Charara, A. Nonlinear observer of sideslip angle using a particle filter estimation methodology. IFAC Proceedings Volumes. 2011. No. 44(1), pp. 6266–6271.
dc.relation.referencesen6. Dandach, H., Abdallah, F., De Miras, J. and Charara, A. Vehicle dynamics estimation using box particle filter. In 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV) . 2012. pp. 118–123.
dc.relation.referencesen7. Ma, J. and Zhao, Q. Robot Visual Servo with Fuzzy Particle Filter. JCP, 2012. No. 7(4), pp. 842–845.
dc.relation.referencesen8. Vantsevich, V., Gorsich, D., Lozynskyy, A., Demkiv, L. and Borovets, T. State Observers for Terrain Mobility Controls: A Technical Analysis. In IFToMM World Congress on Mechanism and Machine Science (Springer, Cham). 2019. pp. 3681–3690.
dc.relation.referencesen9. Fox, D., Thrun, S., & Burgard, W. Probabilistic robotics. MIT Press. 2005.
dc.relation.referencesen10. Gray, J. P., Vantsevich, V. V., Opeiko, A. F., & Hudas, G. R. A Method for Unmanned Ground Wheeled Vehicle Mobility Estimation in Stochastic Terrain Conditions. In Proc. of the 7th Americas Regional Conference of the ISTVS, Tampa, Florida, USA. 2013.
dc.relation.referencesen11. Belousov, B., Ksenevich, T. I., Vantsevich, V., & Naumov, S. An active long-travel, two performance loop control suspension of an open-link locomotion module for off-road applications. SAE Technical Paper. 2014. No. 2014-01-2288.
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Боровець Т. В., 2020
dc.subjectфільтр частинок
dc.subjectнечітка логіка
dc.subjectспостерігач
dc.subjectестиматор
dc.subjectдинамічна система
dc.subjectелектромобіль
dc.subjectелектропривід
dc.subjectматематичне моделювання
dc.subjectparticle filter
dc.subjectfuzzy logic
dc.subjectobserver
dc.subjectestimator
dc.subjectdynamical system
dc.subjectelectric vehicle
dc.subjectelectrical drive
dc.subjectmathematical modeling
dc.titleЗастосування нечіткого фільтра частинок для спостереження станів динамічної системи в режимі реального часу
dc.title.alternativeApplication of a fuzzy particle filter to observe a dynamical system states in real time
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v2n1_Borovets_T-Application_of_a_fuzzy_particle_18-26.pdf
Size:
1001.18 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v2n1_Borovets_T-Application_of_a_fuzzy_particle_18-26__COVER.png
Size:
384.28 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.96 KB
Format:
Plain Text
Description: