Дослідження впливу засобів контролю та діагностики на показники надійності та функційної безпечності систем передавання інформації
dc.citation.epage | 108 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Інфокомунікаційні технології та електронна інженерія | |
dc.citation.spage | 98 | |
dc.citation.volume | 3 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Озірковський, Л. | |
dc.contributor.author | Матіїв, Б. | |
dc.contributor.author | Приймак, Н. | |
dc.contributor.author | Ozirkovskyy, L. | |
dc.contributor.author | Matiiv, B. | |
dc.contributor.author | Pryimak, N. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-07-22T10:58:28Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Наведено результати дослідження впливу засобів контролю та діагностики на значення показників надійності та функційної безпечності відмовостійких систем передавання інформації. Дослідження полягало у моделюванні декількох варіантів відмовостійкої системи передавання інформації. Як метод моделювання застосовано удосконалений метод простору станів з автоматизованою побудовою графу станів та переходів. На основі отриманих результатів сформульовано рекомендації щодо вибору показників надійності засобів контролю та діагностики, щоб забезпечити мінімальне зменшення надійності відмовостійкої системи передавання інформації. | |
dc.description.abstract | The article presents the results of the study of the influence of monitoring and diagnostic means on the values of reliability and functional safety indicators of fault-tolerant information transmission systems. The study was carried out by modeling several variants of a fault-tolerant information transmission system. As a modeling method, an improved state transition diagram with automated construction of a graph of states and transitions is used. On the basis of the obtained results, recommendations for the selection of reliability indicators of control and diagnostic means are formulated to ensure a minimum reduction in the reliability of a fault-tolerant information transmission system. | |
dc.format.extent | 98-108 | |
dc.format.pages | 11 | |
dc.identifier.citation | Озірковський Л. Дослідження впливу засобів контролю та діагностики на показники надійності та функційної безпечності систем передавання інформації / Л. Озірковський, Б. Матіїв, Н. Приймак // Інфокомунікаційні технології та електронна інженерія. — Львів : Видавництво Львівської політехніки, 2023. — Том 3. — № 1. — С. 98–108. | |
dc.identifier.citationen | Ozirkovskyy L. Investigation of the effect of maintenance strategy parameters on the accident rate of the mobile communication system / L. Ozirkovskyy, B. Matiiv, N. Pryimak // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 1. — P. 98–108. | |
dc.identifier.doi | doi.org/10.23939/ictee2023.01.098 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111426 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Інфокомунікаційні технології та електронна інженерія, 1 (3), 2023 | |
dc.relation.ispartof | Infocommunication Technologies and Electronic Engineering, 1 (3), 2023 | |
dc.relation.references | [1] Koren, I., Mani Krishna, C. (2020). Fault-Tolerant Systems, Second Edition, Morgan Kaufmann. 416 p. | |
dc.relation.references | [2] Nørvåg, Kjetil (2012). An Introduction to Fault-Tolerant Systems”, Department of Computer and Information Science Norwegian University of Science and Technology. Trondheim, Norway. 21 p. | |
dc.relation.references | [3] Ouyang, Y., Wang, Q., Li, Z., Liang, H., Li, J. (2021). “Fault-tolerant design for data efficient retransmission in WiNoC”, in Tsinghua Science and Technology, Vol. 26, No. 1, pp. 85–94. | |
dc.relation.references | [4] Zhou, Q., Zhao, T., Chen, X., Zhong, Y., Luo, H. (2022). A Fault-Tolerant Transmission Scheme in SDN-Based Industrial IoT (IIoT) over Fiber-Wireless Networks. Entropy 2022, 24, 157. | |
dc.relation.references | [5] Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M. (2016) Diagnosis and Fault-tolerant Control. 3rd Edition. Springer-Verlag Berlin Heidelberg, 715 p. | |
dc.relation.references | [6] Stamatis, D. (2019). Risk Management Using Failure Mode and Effect Analysis (FMEA). ASQ Quality Press, 118 p. | |
dc.relation.references | [7] Analysis techniques for system reliability – Procedure for failure mode and effects analysis (FMEA) IEC 60812. | |
dc.relation.references | [8] Rausand М. (2014) Reliability of Safety-Critical Systems: Theory and Applications. John Wiley & Sons, 466 p. | |
dc.relation.references | [9] Матіїв Б. В. (керівник – Л. Д. Озірковський) (2022). Оцінювання впливу засобів контролю та діагностики на показники надійності та безпечності відмовостійких програмно-апаратних радіоелектронних засобів: бакалаврська кваліфікаційна робота. Львів: Національний університет “Львівська політехніка”, 2022. 75 с. | |
dc.relation.references | [10] Berk, M., Schubert, O., Kroll, H., Buschardt, B., & Štraub, D. (2019). Reliability Assessment of Safety-Critical Sensor Information: Does One Need a Reference Truth? IEEE Transactions on Reliability, 68, рр. 1227–1241. | |
dc.relation.references | [11] Henley, E., Kumamoto, H. (2000). Probabilistic Risk Assessment: Reliability Engineering, Design and Analysis. Wiley-IEEE Press, 2-nd ed. | |
dc.relation.references | [12] Minimal cut set analysis. Appendix D. Guide-lines for Chemical Process Quantitative Risk Analysis, Second Edition by Center for Chemical Process Safety (2010). American Institute of Chemical Engineers | |
dc.relation.references | [13] Kvassay, M., Kostolny, M. “Minimal Cut Sets and Path Sets in Binary Decision Diagrams and logical differential calculus”, The 10th International Conference on Digital Technologies, 9–11 July 2014, Zilina, Slovakia. | |
dc.relation.references | [14] Cui, L., Frenkel, I., Lisnianski A. (2020). Stochastic Models in Reliability Engineering, CRC Press, 478 p. | |
dc.relation.references | [15] Ozirkovskyy, L., Volochiy, B., Shkiliuk, O., Zmysnyi, M., Kazan, P.(2022). “Functional Safety Analysis Of Safety-Critical System Using State Transition Diagram”, Radioelectronic and Computer Systems, 2022(2), pp. 145–158. | |
dc.relation.references | [16] Volochiy, B., Ozirkovskyy, L. (2018). “Method of developing unified model for estimating safety and reliability of complex systems for critical application”, 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, TCSET 2018, pp. 801–804. | |
dc.relation.references | [17] Бобало, Ю., Волочій, Б., Лозинський, О., Мандзій, Б., Озірковський, Л.,Федасюк, Д., Щербовських, С., Яковина В. (2013). Математичні моделі та методи для аналізу надійності радіоелектронних, електротехнічних та програмних систем: монографія. Львів: Вид-во Львівської політехніки, 2013. 300 с. | |
dc.relation.references | [18] Volochiy, B., Mandziy, B., Ozirkovskyy, L. (2012). “Extending The Features of Software For Reliability Analysis of Fault-tolerant Systems”. Computational Problems of Electrical Engineering, Lviv Politechnic National University, Vol. 2, No. 1, pp. 113–121. | |
dc.relation.references | [19] R&S®NH/NV8600 UHF Transmitter Family for TV High power – low consumption. Data Sheet2.0. http://www.unlimitech.com/uploads/5/0/2/7/50276885/rs-nv8600.pdf | |
dc.relation.references | [20] Рижов, Є., Сакович, Л., Глухов, С., Настишин, Ю. (2021). Оцінка впливу діагностичного забезпечення на надійність радіоелектронних систем, Військово-техн. збірник, (24), С. 3–8. | |
dc.relation.referencesen | [1] Koren, I., Mani Krishna, C. (2020). Fault-Tolerant Systems, Second Edition, Morgan Kaufmann. 416 p. | |
dc.relation.referencesen | [2] Nørvåg, Kjetil (2012). An Introduction to Fault-Tolerant Systems", Department of Computer and Information Science Norwegian University of Science and Technology. Trondheim, Norway. 21 p. | |
dc.relation.referencesen | [3] Ouyang, Y., Wang, Q., Li, Z., Liang, H., Li, J. (2021). "Fault-tolerant design for data efficient retransmission in WiNoC", in Tsinghua Science and Technology, Vol. 26, No. 1, pp. 85–94. | |
dc.relation.referencesen | [4] Zhou, Q., Zhao, T., Chen, X., Zhong, Y., Luo, H. (2022). A Fault-Tolerant Transmission Scheme in SDN-Based Industrial IoT (IIoT) over Fiber-Wireless Networks. Entropy 2022, 24, 157. | |
dc.relation.referencesen | [5] Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M. (2016) Diagnosis and Fault-tolerant Control. 3rd Edition. Springer-Verlag Berlin Heidelberg, 715 p. | |
dc.relation.referencesen | [6] Stamatis, D. (2019). Risk Management Using Failure Mode and Effect Analysis (FMEA). ASQ Quality Press, 118 p. | |
dc.relation.referencesen | [7] Analysis techniques for system reliability – Procedure for failure mode and effects analysis (FMEA) IEC 60812. | |
dc.relation.referencesen | [8] Rausand M. (2014) Reliability of Safety-Critical Systems: Theory and Applications. John Wiley & Sons, 466 p. | |
dc.relation.referencesen | [9] Matiiv B. V. (kerivnyk – L. D. Ozirkovskyi) (2022). Otsiniuvannia vplyvu zasobiv kontroliu ta diahnostyky na pokaznyky nadiinosti ta bezpechnosti vidmovostiikykh prohramno-aparatnykh radioelektronnykh zasobiv: bakalavrska kvalifikatsiina robota. Lviv: Natsionalnyi universytet "Lvivska politekhnika", 2022. 75 p. | |
dc.relation.referencesen | [10] Berk, M., Schubert, O., Kroll, H., Buschardt, B., & Štraub, D. (2019). Reliability Assessment of Safety-Critical Sensor Information: Does One Need a Reference Truth? IEEE Transactions on Reliability, 68, rr. 1227–1241. | |
dc.relation.referencesen | [11] Henley, E., Kumamoto, H. (2000). Probabilistic Risk Assessment: Reliability Engineering, Design and Analysis. Wiley-IEEE Press, 2-nd ed. | |
dc.relation.referencesen | [12] Minimal cut set analysis. Appendix D. Guide-lines for Chemical Process Quantitative Risk Analysis, Second Edition by Center for Chemical Process Safety (2010). American Institute of Chemical Engineers | |
dc.relation.referencesen | [13] Kvassay, M., Kostolny, M. "Minimal Cut Sets and Path Sets in Binary Decision Diagrams and logical differential calculus", The 10th International Conference on Digital Technologies, 9–11 July 2014, Zilina, Slovakia. | |
dc.relation.referencesen | [14] Cui, L., Frenkel, I., Lisnianski A. (2020). Stochastic Models in Reliability Engineering, CRC Press, 478 p. | |
dc.relation.referencesen | [15] Ozirkovskyy, L., Volochiy, B., Shkiliuk, O., Zmysnyi, M., Kazan, P.(2022). "Functional Safety Analysis Of Safety-Critical System Using State Transition Diagram", Radioelectronic and Computer Systems, 2022(2), pp. 145–158. | |
dc.relation.referencesen | [16] Volochiy, B., Ozirkovskyy, L. (2018). "Method of developing unified model for estimating safety and reliability of complex systems for critical application", 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, TCSET 2018, pp. 801–804. | |
dc.relation.referencesen | [17] Bobalo, Yu., Volochii, B., Lozynskyi, O., Mandzii, B., Ozirkovskyi, L.,Fedasiuk, D., Shcherbovskykh, S., Yakovyna V. (2013). Matematychni modeli ta metody dlia analizu nadiinosti radioelektronnykh, elektrotekhnichnykh ta prohramnykh system: monograph. Lviv: Vyd-vo Lvivskoi politekhniky, 2013. 300 p. | |
dc.relation.referencesen | [18] Volochiy, B., Mandziy, B., Ozirkovskyy, L. (2012). "Extending The Features of Software For Reliability Analysis of Fault-tolerant Systems". Computational Problems of Electrical Engineering, Lviv Politechnic National University, Vol. 2, No. 1, pp. 113–121. | |
dc.relation.referencesen | [19] R&S®NH/NV8600 UHF Transmitter Family for TV High power – low consumption. Data Sheet2.0. http://www.unlimitech.com/uploads/5/0/2/7/50276885/rs-nv8600.pdf | |
dc.relation.referencesen | [20] Ryzhov, Ye., Sakovych, L., Hlukhov, S., Nastyshyn, Yu. (2021). Otsinka vplyvu diahnostychnoho zabezpechennia na nadiinist radioelektronnykh system, Viiskovo-tekhn. zbirnyk, (24), P. 3–8. | |
dc.relation.uri | http://www.unlimitech.com/uploads/5/0/2/7/50276885/rs-nv8600.pdf | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | надійність | |
dc.subject | надійнісне проєктування | |
dc.subject | функційна безпечність | |
dc.subject | показники надійності | |
dc.subject | відмовостійкі системи | |
dc.subject | засоби контролю та діагностики | |
dc.subject | метод простору станів | |
dc.subject | марковська модель | |
dc.subject | reliability | |
dc.subject | reliability engineering | |
dc.subject | functional safety | |
dc.subject | reliability indicators | |
dc.subject | fault-tolerant systems | |
dc.subject | monitoring and diagnostic means | |
dc.subject | state transition diagram | |
dc.subject | Markov model | |
dc.subject.udc | 629.039.58 | |
dc.subject.udc | 621.396.9 | |
dc.title | Дослідження впливу засобів контролю та діагностики на показники надійності та функційної безпечності систем передавання інформації | |
dc.title.alternative | Investigation of the effect of maintenance strategy parameters on the accident rate of the mobile communication system | |
dc.type | Article |
Files
License bundle
1 - 1 of 1