Development of the composition and properties of a wall block made of non-autoclaved aerated concrete based on secondary raw materials of the Kyrgyz Republic

dc.citation.epage58
dc.citation.issue1
dc.citation.journalTitleАрхітектурні дослідження
dc.citation.spage46
dc.contributor.affiliationМіжнародний університет інноваційних технологій
dc.contributor.affiliationМіжнародний університет інноваційних технологій
dc.contributor.affiliationКиргизько-російський слов’янський університет
dc.contributor.affiliationКиргизький державний технічний університет імені І. Раззакова
dc.contributor.affiliationМіжнародний університет інноваційних технологій
dc.contributor.affiliationInternational University of Innovative Technologies
dc.contributor.affiliationInternational University of Innovative Technologies
dc.contributor.affiliationKyrgyz-Russian Slavic University
dc.contributor.affiliationKyrgyz State Technical University named after I. Razzakov
dc.contributor.affiliationInternational University of Innovative Technologies
dc.contributor.authorМатиєва, Акбермет
dc.contributor.authorМелібаєв, Содікжон
dc.contributor.authorСардарбекова, Ельміра
dc.contributor.authorкизи, Еркінай Муканбет
dc.contributor.authorАсаналієва, Жилдиз
dc.contributor.authorMatyeva, Akbermet
dc.contributor.authorMelibaev, Sodikzhon
dc.contributor.authorSardarbekova, Elmira
dc.contributor.authorkyzy, Erkinai Mukanbet
dc.contributor.authorAsanalieva, Zhyldyz
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-24T12:03:01Z
dc.date.created2025-04-10
dc.date.issued2025-04-10
dc.description.abstractМетою дослідження було розроблення складу неавтоклавного газобетону із застосуванням місцевих вторинних і техногенних матеріалів для зниження собівартості при забезпеченні нормативної міцності. Методологія включала лабораторні випробування на базі Киргизького державного університету будівництва, транспорту і архітектури з використанням портландцементу, негашеного вапна, гіпсу, алюмінієвої пудри і різних мінеральних заповнювачів: некондиційного глинистого піску, польовошпатового піску та хвостів збагачення сурм’яних руд (ХЗСР). Дослідження проводили за варіювання співвідношень компонентів для визначення впливу на середню густину і міцність на стиск. Результати показали, що мінімальна густина 575-580 кг/м3 досягалася за вмісту 60-70 % ХЗСР і 30-40 % польовошпатового піску за рахунок збільшеної пористості активної дисперсної фази. Підвищення частки польовошпатового піску збільшувало щільність до 800 кг/м3. Використання глинистого піску в межах 30-35 % знижувало густину до 625-650 кг/м3 за рахунок активізації газоутворення і формування розвиненої пористої структури. Максимальна міцність 2,23 МПа досягалася при 100 % ХЗСР завдяки високому вмісту активного кремнезему і синтезу гідросилікатів кальцію. Збільшення частки польовошпатового або глинистого піску знижувало міцність до 1,61-1,66 МПа. Додавання до 1 % NaOH сприяло інтенсифікації газоутворення та активації алюмосилікатних компонентів, покращуючи розподіл пір і підвищуючи міцність при зниженні щільності. Макроструктурний аналіз підтвердив, що застосування піску дрібних фракцій (≤0,315 мм) забезпечує рівномірну пористу структуру, покращуючи міцність і теплоізоляційні властивості матеріалу, в той час як великі фракції викликали структурні дефекти і зниження характеристик. Практична цінність роботи полягає в можливості застосування розроблених складів у малоповерховому та сільському будівництві, при виробництві легких стінових блоків в умовах малого та середнього бізнесу, а також для розширення використання місцевих мінеральних відходів у будівельній галузі з одночасним зниженням екологічного навантаження
dc.description.abstractThe aim of this study was to develop the composition of non-autoclaved aerated concrete using local secondary and technogenic materials to reduce production costs while ensuring compliance with strength standards. The methodology involved laboratory tests conducted at the Kyrgyz State University of Construction, Transport and Architecture named after N. Isanov, using Portland cement, quicklime, gypsum, aluminium powder and various mineral aggregates: substandard clay sand, feldspathic sand, and antimony ore beneficiation tailings (AOBT). The study varied component ratios to determine their effect on average density and compressive strength. Results showed that a minimum density of 575-580 kg/m3 was achieved with 60-70% AOBT and 30-40% feldspathic sand, owing to the increased porosity of the active dispersed phase. Increasing the proportion of feldspathic sand raised the density to 800 kg/m³. The use of clay sand in the range of 30-35% reduced the density to 625-650 kg/m3 due to the activation of gas formation and the development of a well-formed porous structure. The maximum strength of 2.23 MPa was achieved with 100% AOBT, owing to the high content of reactive silica and the synthesis of calcium hydrosilicates. Increasing the share of feldspathic or clay sand reduced strength to 1.61-1.66 MPa. The addition of up to 1% NaOH promoted gas generation and activation of aluminosilicate components, improving pore distribution and increasing strength while lowering density. Macroscopic structural analysis confirmed that using fine sand fractions (≤0.315 mm) ensures a uniform porous structure, improving both strength and thermal insulation properties of the material, whereas coarse fractions caused structural defects and a decline in performance. The practical value of this work lies in the potential application of the developed compositions in low-rise and rural construction, in the production of lightweight wall blocks by small and medium-sized enterprises, and in the expanded use of local mineral waste in the construction industry while simultaneously reducing environmental impact
dc.format.extent46-58
dc.format.pages13
dc.identifier.citationDevelopment of the composition and properties of a wall block made of non-autoclaved aerated concrete based on secondary raw materials of the Kyrgyz Republic / Akbermet Matyeva, Sodikzhon Melibaev, Elmira Sardarbekova, Erkinai Mukanbet kyzy, Zhyldyz Asanalieva // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 1. — P. 46–58.
dc.identifier.citation2015Development of the composition and properties of a wall block made of non-autoclaved aerated concrete based on secondary raw materials of the Kyrgyz Republic / Matyeva A. та ін. // Architectural Studies, Lviv. 2025. Vol 11. No 1. P. 46–58.
dc.identifier.citationenAPAMatyeva, A., Melibaev, S., Sardarbekova, E., kyzy, E. M., & Asanalieva, Z. (2025). Development of the composition and properties of a wall block made of non-autoclaved aerated concrete based on secondary raw materials of the Kyrgyz Republic. Architectural Studies, 11(1), 46-58. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOMatyeva A., Melibaev S., Sardarbekova E., kyzy E. M., Asanalieva Z. (2025) Development of the composition and properties of a wall block made of non-autoclaved aerated concrete based on secondary raw materials of the Kyrgyz Republic. Architectural Studies (Lviv), vol. 11, no 1, pp. 46-58.
dc.identifier.doi10.56318/as/1.2025.46
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/121572
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofАрхітектурні дослідження, 1 (11), 2025
dc.relation.ispartofArchitectural Studies, 1 (11), 2025
dc.relation.references[1] Aramburu, B., De Avila Delucis, R., & Amico, C. (2024). Autoclaved aerated concrete reinforced by polymeric pins. Materiales de Construcción, 74(355), article number e350. doi: 10.3989/mc.2024.370623.
dc.relation.references[2] Arslan, M., Aykanat, B., Subaşı, S., & Maraşlı, M. (2021). Cyclic behavior of autoclaved aerated concrete block infill walls strengthened by basalt and glass fiber composites. Engineering Structures, 240, article number 112431. doi: 10.1016/J.ENGSTRUCT.2021.112431.
dc.relation.references[3] Astakhova, N., & Astakhov, V. (2024). Protective properties of slag and pumice concrete and slag concrete towards steel reinforcement. Mining Journal of Kryvyi Rih National University, 58(1), 73-77. doi: 10.31721/2306-5435-2024-1-112-73-77.
dc.relation.references[4] Basok, B., Priymak, O., Honcharuk, S., & Pasichnyk, P. (2023). Study of the influence of the exploitation period on thermal physical properties of different types of thermal insulation of wall enclosure structures. Technologies and Engineering, 24(1), 18-25. doi: 10.30857/2786-5371.2023.1.2.
dc.relation.references[5] Boronbaev, E. (2020). Energy saving architecture: Background, theory and practice in Kyrgyzstan. E3S Web of Conferences, 172, article number 19010. doi: 10.1051/e3sconf/202017219010.
dc.relation.references[6] Chen, G., Li, F., Jing, P., Geng, J., & Si, Z. (2021). Effect of pore structure on thermal conductivity and mechanical properties of autoclaved aerated concrete. Materials, 14(2), article number 339. doi: 10.3390/ma14020339.
dc.relation.references[7] GOST 10180-2012 “Concretes. Methods of determination of strength by control samples”. (2012). Retrieved from https://vsegost.com/Catalog/56/56431.shtml.
dc.relation.references[8] GOST 125-79 “Gypsum binders. Technical conditions”. (1980). Retrieved from https://surli.cc/jrftjk.
dc.relation.references[9] GOST 31108-2020 “Cements for general construction. Technical conditions”. (2020). Retrieved from https://vsegost.com/Catalog/73/73873.shtml.
dc.relation.references[10] GOST 31359-2024 “Autoclaved cellular concrete. Technical conditions”. (2024). Retrieved from https://vsegost.com/Catalog/82/82634.shtml.
dc.relation.references[11] GOST 5494-95 “Aluminium powder. Technical conditions”. (1996). Retrieved from https://vsegost.com/Catalog/24/2420.shtml.
dc.relation.references[12] Jin, W. (2022). Common faults prevention of autoclaved aerated concrete block masonry. Highlights in Science, Engineering and Technology, 10, 76-84. doi: 10.54097/hset.v10i.1229.
dc.relation.references[13] Liu, C., Hou, J., Hao, Y., Hao, H., & Meng, X. (2021). Effect of high strain rate and confinement on the compressive properties of autoclaved aerated concrete. International Journal of Impact Engineering, 156, article number 103943. doi: 10.1016/J.IJIMPENG.2021.103943.
dc.relation.references[14] Ma, X., Li, H., Wang, D., Li, C., & Wei, Y. (2022). Simulation and experimental substantiation of the thermal properties of non-autoclaved aerated concrete with recycled concrete powder. Materials, 15(23), article number 8341. doi: 10.3390/ma15238341.
dc.relation.references[15] Maltschik, A. (2024). Main tendentions in development of architecture of Kyrgyzstan (the 20th – the first decades of the 21st centuries). Architecture and Civil Engineering, 1(3), 17-22. doi: 10.51301/ace.2024.i3.03.
dc.relation.references[16] Mamatov, Z., Orunbaev, S., Sydykov, Y., & Shamshiev, N. (2024). Residential buildings made with local materials and their classification on the basis of a field experiment. In M. Bezzeghoud et al. (Eds.), Recent research on geotechnical engineering, remote sensing, geophysics and earthquake seismology (pp. 309-313). Cham: Springer. doi: 10.1007/978-3-031-48715-6_67.
dc.relation.references[17] Melibaev, S.J. (2009). New effective filler for non-autoclaved aerated concrete. Bulletin of the Kyrgyz State University of Construction, Transport and Architecture, 23(1), 87-91.
dc.relation.references[18] Mészárošová, L., Černý, V., Melichar, J., Ondříčková, P., & Drochytka, R. (2024). The usability of metallurgical production waste as a siliceous component in autoclaved aerated concrete technology. Buildings, 14(10), article number 3155. doi: 10.3390/buildings14103155.
dc.relation.references[19] Michelini, E., Ferretti, D., Miccoli, L., & Parisi, F. (2023). Autoclaved aerated concrete masonry for energy efficient buildings: State of the art and future developments. Construction and Building Materials, 402, article number 132996. doi: 10.1016/j.conbuildmat.2023.132996.
dc.relation.references[20] Mollaei, S., Ghazijahani, R., Farsangi, N., & Jahani, D. (2022). Investigation of behavior of masonry walls constructed with autoclaved aerated concrete blocks under blast loading. Applied Sciences, 12(17), article number 8725. doi: 10.3390/app12178725.
dc.relation.references[21] Montayev, S.A., Shinguzhiyeva, A.B., Adilova, N.B., Montayeva, A.S., & Montayeva, A.S. (2016). Development of effective technological parameters for formation of a porous structure of the raw composition in order to obtain a lightweight granular insulation material. ARPN Journal of Engineering and Applied Sciences, 11(17), 10454-10459.
dc.relation.references[22] Murali, G., & Azab, M. (2023). Recent research in utilization of phosphogypsum as building materials: Review. Journal of Materials Research and Technology, 25, 960-987. doi: 10.1016/j.jmrt.2023.05.272.
dc.relation.references[23] Muthusubramanian, B., Neelamegam, P., Ramar, V., & Suresh, V. (2023). Assessing the embodied carbon and energy required for manufacturing sustainable concrete blocks using plastic pollution as a fiber. Environmental Science and Pollution Research International, 30(49), 107533-107548. doi: 10.1007/s11356-023-29933-4.
dc.relation.references[24] Oladiran, O., & Simeon, D. (2023). Consciousness and prospects of autoclaved aerated concrete (AAC) blocks for wall construction: Comparative study Nigeria and South Africa. Journal of Construction Business and Management, 6(2), 1-10. doi: 10.15641/jcbm.6.2.1252.
dc.relation.references[25] Paul, A., Dey, P., & Dhar, M. (2025). Physico-mechanical properties of autoclaved aerated concrete block as an alternative to traditional bricks. Research on Engineering Structures and Materials. doi: 10.17515/resm2025-392me0811rs.
dc.relation.references[26] Peng, Y., Liu, Y., Zhan, B., & Xu, G. (2021). Preparation of autoclaved aerated concrete by using graphite tailings as an alternative silica source. Construction and Building Materials, 267, article number 121792. doi: 10.1016/j.conbuildmat.2020.121792.
dc.relation.references[27] Pi, T., Du, Z., Zhang, H., & Wang, S. (2021). Experimental study on basic mechanical properties of core-column non-mortar aerated concrete block masonry. International Journal of Concrete Structures and Materials, 15, article number 18. doi: 10.1186/s40069-021-00455-y.
dc.relation.references[28] Quan, W., Huang, W., Mao, W., Yu, X., Zhou, X., Miao, X., & Hou, L. (2024). Preparing autoclaved aerated concrete using molybdenum tailings. Journal of Building Engineering, 95, article number 110138. doi: 10.1016/j.jobe.2024.110138.
dc.relation.references[29] Sardarbekova, E.K., Shukurbek, U.K., & Sarkarov, U.T. (2022). Optimisation of technological parameters of ceramic material based on mechanically activated loams. Science and Innovative Technologies, 22(1), 192-199.
dc.relation.references[30] Seddighi, F., Pachideh, G., & Salimbahrami, S.B. (2021). A study of mechanical and microstructures properties of autoclaved aerated concrete containing nano-graphene. Journal of Building Engineering, 43, article number 103106. doi: 10.1016/J.JOBE.2021.103106.
dc.relation.references[31] Shumakov, I., Miroshnikov, V., Younis, B., Buhaievskyi, S., & Bratishko, S. (2024). Improvement of concrete parameters by the method of sodium silicates impregnation by internal vacuum tamping. IOP Conference Series: Earth and Environmental Science, 1376, article number 012031. doi: 10.1088/1755-1315/1376/1/012031.
dc.relation.references[32] Song, H., Yu, J., Oh, J.E., & Suh, J-I. (2023). Production of lightweight cementless binders using supplementary cementitious materials to replace autoclaved aerated concrete blocks. Journal of Cleaner Production, 384, article number 135397. doi: 10.1016/j.jclepro.2022.135397.
dc.relation.references[33] Thakur, A., & Kumar, S. (2022). Mechanical properties and development of light weight concrete by using autoclaved aerated concrete (AAC) with aluminum powder. Materials Today: Proceedings, 56(6), 3734-3739. doi: 10.1016/j.matpr.2021.12.508.
dc.relation.references[34] Timchenko, R., Krishko, D., Slynko, Т., Glukhanko, S., Berezka, O., & Borak, R. (2023). Method for assessing the condition of multilayer enclosing structures. Journal of Kryvyi Rih National University, 21(1), 184-190. doi: 10.31721/2306-5451-2023-1-56-184-191.
dc.relation.references[35] Walczak, P. (2023). AAC life cycle: How long can autoclaved aerated concrete buildings be used. ce/papers – Proceedings in Civil Engineering, 6(2), 41-45. doi: 10.1002/cepa.2095.
dc.relation.references[36] Wang, C.Q., Mei, X.D., Zhang, C., Liu, D.S., & Xu, F.L. (2020). Mechanism study on co-processing of water-based drilling cuttings and phosphogypsum in non-autoclaved aerated concrete. Environmental Science and Pollution Research International, 27(18), 23364-23368. doi: 10.1007/s11356-020-09029-z.
dc.relation.references[37] Wu, R., Dai, S., Jian, S., Huang, J., Tan, H., & Baodong, L. (2021). Utilization of solid waste high-volume calcium coal gangue in autoclaved aerated concrete: Physico-mechanical properties, hydration products and economic costs. Journal of Cleaner Production, 278, article number 123416. doi: 10.1016/j.jclepro.2020.123416.
dc.relation.references[38] Xia, J., Chen, Y., Chen, J., Li, A., & Chen, T. (2021). Preparation of autoclaved aerated concrete from construction waste. IOP Conference Series: Earth and Environmental Science, 687, article number 012067. doi: 10.1088/1755-1315/687/1/012067.
dc.relation.references[39] Yakovkin, I.N., Katrich, G.A., Loburets, A.T., Vedula, Yu.S., & Naumovets, A.G. (1998). Alkaline-earth overlayers on furrowed transition metal surfaces: An example of tailoring the surface properties. Progress in Surface Science, 59(1-4), 355-365. doi: 10.1016/S0079-6816(98)00061-6.
dc.relation.references[40] Yusrianto, E., Marsi, N., Kassim, N., Manaf, I., & Shariff, H. (2022). Acoustic properties of autoclaved aerated concrete (AAC) based on gypsum-ceramic waste (GCW). International Journal of Integrated Engineering, 14(8), 67-76. doi: 10.30880/ijie.2022.14.08.009.
dc.relation.references[41] Zhang, J, Huang, F., Wu, Y., Fu, T., Huang, B., Liu, W., & Qiu, R. (2022). Mechanical properties and interface improvement of bamboo cellulose nanofibers reinforced autoclaved aerated concrete. Cement and Concrete Composites, 134, article number 104760. doi: 10.1016/j.cemconcomp.2022.104760.
dc.relation.references[42] Zhang, K., Wei, Q., Jiang, S., Shen, Z., Zhang, Y., Tang, R., Yang, A., & Chow, C. (2022). Utilization of dredged river sediment in preparing autoclaved aerated concrete blocks. Journal of Renewable Materials, 10(11), 2989-3008. doi: 10.32604/jrm.2022.019821.
dc.relation.referencesen[1] Aramburu, B., De Avila Delucis, R., & Amico, C. (2024). Autoclaved aerated concrete reinforced by polymeric pins. Materiales de Construcción, 74(355), article number e350. doi: 10.3989/mc.2024.370623.
dc.relation.referencesen[2] Arslan, M., Aykanat, B., Subaşı, S., & Maraşlı, M. (2021). Cyclic behavior of autoclaved aerated concrete block infill walls strengthened by basalt and glass fiber composites. Engineering Structures, 240, article number 112431. doi: 10.1016/J.ENGSTRUCT.2021.112431.
dc.relation.referencesen[3] Astakhova, N., & Astakhov, V. (2024). Protective properties of slag and pumice concrete and slag concrete towards steel reinforcement. Mining Journal of Kryvyi Rih National University, 58(1), 73-77. doi: 10.31721/2306-5435-2024-1-112-73-77.
dc.relation.referencesen[4] Basok, B., Priymak, O., Honcharuk, S., & Pasichnyk, P. (2023). Study of the influence of the exploitation period on thermal physical properties of different types of thermal insulation of wall enclosure structures. Technologies and Engineering, 24(1), 18-25. doi: 10.30857/2786-5371.2023.1.2.
dc.relation.referencesen[5] Boronbaev, E. (2020). Energy saving architecture: Background, theory and practice in Kyrgyzstan. E3S Web of Conferences, 172, article number 19010. doi: 10.1051/e3sconf/202017219010.
dc.relation.referencesen[6] Chen, G., Li, F., Jing, P., Geng, J., & Si, Z. (2021). Effect of pore structure on thermal conductivity and mechanical properties of autoclaved aerated concrete. Materials, 14(2), article number 339. doi: 10.3390/ma14020339.
dc.relation.referencesen[7] GOST 10180-2012 "Concretes. Methods of determination of strength by control samples". (2012). Retrieved from https://vsegost.com/Catalog/56/56431.shtml.
dc.relation.referencesen[8] GOST 125-79 "Gypsum binders. Technical conditions". (1980). Retrieved from https://surli.cc/jrftjk.
dc.relation.referencesen[9] GOST 31108-2020 "Cements for general construction. Technical conditions". (2020). Retrieved from https://vsegost.com/Catalog/73/73873.shtml.
dc.relation.referencesen[10] GOST 31359-2024 "Autoclaved cellular concrete. Technical conditions". (2024). Retrieved from https://vsegost.com/Catalog/82/82634.shtml.
dc.relation.referencesen[11] GOST 5494-95 "Aluminium powder. Technical conditions". (1996). Retrieved from https://vsegost.com/Catalog/24/2420.shtml.
dc.relation.referencesen[12] Jin, W. (2022). Common faults prevention of autoclaved aerated concrete block masonry. Highlights in Science, Engineering and Technology, 10, 76-84. doi: 10.54097/hset.v10i.1229.
dc.relation.referencesen[13] Liu, C., Hou, J., Hao, Y., Hao, H., & Meng, X. (2021). Effect of high strain rate and confinement on the compressive properties of autoclaved aerated concrete. International Journal of Impact Engineering, 156, article number 103943. doi: 10.1016/J.IJIMPENG.2021.103943.
dc.relation.referencesen[14] Ma, X., Li, H., Wang, D., Li, C., & Wei, Y. (2022). Simulation and experimental substantiation of the thermal properties of non-autoclaved aerated concrete with recycled concrete powder. Materials, 15(23), article number 8341. doi: 10.3390/ma15238341.
dc.relation.referencesen[15] Maltschik, A. (2024). Main tendentions in development of architecture of Kyrgyzstan (the 20th – the first decades of the 21st centuries). Architecture and Civil Engineering, 1(3), 17-22. doi: 10.51301/ace.2024.i3.03.
dc.relation.referencesen[16] Mamatov, Z., Orunbaev, S., Sydykov, Y., & Shamshiev, N. (2024). Residential buildings made with local materials and their classification on the basis of a field experiment. In M. Bezzeghoud et al. (Eds.), Recent research on geotechnical engineering, remote sensing, geophysics and earthquake seismology (pp. 309-313). Cham: Springer. doi: 10.1007/978-3-031-48715-6_67.
dc.relation.referencesen[17] Melibaev, S.J. (2009). New effective filler for non-autoclaved aerated concrete. Bulletin of the Kyrgyz State University of Construction, Transport and Architecture, 23(1), 87-91.
dc.relation.referencesen[18] Mészárošová, L., Černý, V., Melichar, J., Ondříčková, P., & Drochytka, R. (2024). The usability of metallurgical production waste as a siliceous component in autoclaved aerated concrete technology. Buildings, 14(10), article number 3155. doi: 10.3390/buildings14103155.
dc.relation.referencesen[19] Michelini, E., Ferretti, D., Miccoli, L., & Parisi, F. (2023). Autoclaved aerated concrete masonry for energy efficient buildings: State of the art and future developments. Construction and Building Materials, 402, article number 132996. doi: 10.1016/j.conbuildmat.2023.132996.
dc.relation.referencesen[20] Mollaei, S., Ghazijahani, R., Farsangi, N., & Jahani, D. (2022). Investigation of behavior of masonry walls constructed with autoclaved aerated concrete blocks under blast loading. Applied Sciences, 12(17), article number 8725. doi: 10.3390/app12178725.
dc.relation.referencesen[21] Montayev, S.A., Shinguzhiyeva, A.B., Adilova, N.B., Montayeva, A.S., & Montayeva, A.S. (2016). Development of effective technological parameters for formation of a porous structure of the raw composition in order to obtain a lightweight granular insulation material. ARPN Journal of Engineering and Applied Sciences, 11(17), 10454-10459.
dc.relation.referencesen[22] Murali, G., & Azab, M. (2023). Recent research in utilization of phosphogypsum as building materials: Review. Journal of Materials Research and Technology, 25, 960-987. doi: 10.1016/j.jmrt.2023.05.272.
dc.relation.referencesen[23] Muthusubramanian, B., Neelamegam, P., Ramar, V., & Suresh, V. (2023). Assessing the embodied carbon and energy required for manufacturing sustainable concrete blocks using plastic pollution as a fiber. Environmental Science and Pollution Research International, 30(49), 107533-107548. doi: 10.1007/s11356-023-29933-4.
dc.relation.referencesen[24] Oladiran, O., & Simeon, D. (2023). Consciousness and prospects of autoclaved aerated concrete (AAC) blocks for wall construction: Comparative study Nigeria and South Africa. Journal of Construction Business and Management, 6(2), 1-10. doi: 10.15641/jcbm.6.2.1252.
dc.relation.referencesen[25] Paul, A., Dey, P., & Dhar, M. (2025). Physico-mechanical properties of autoclaved aerated concrete block as an alternative to traditional bricks. Research on Engineering Structures and Materials. doi: 10.17515/resm2025-392me0811rs.
dc.relation.referencesen[26] Peng, Y., Liu, Y., Zhan, B., & Xu, G. (2021). Preparation of autoclaved aerated concrete by using graphite tailings as an alternative silica source. Construction and Building Materials, 267, article number 121792. doi: 10.1016/j.conbuildmat.2020.121792.
dc.relation.referencesen[27] Pi, T., Du, Z., Zhang, H., & Wang, S. (2021). Experimental study on basic mechanical properties of core-column non-mortar aerated concrete block masonry. International Journal of Concrete Structures and Materials, 15, article number 18. doi: 10.1186/s40069-021-00455-y.
dc.relation.referencesen[28] Quan, W., Huang, W., Mao, W., Yu, X., Zhou, X., Miao, X., & Hou, L. (2024). Preparing autoclaved aerated concrete using molybdenum tailings. Journal of Building Engineering, 95, article number 110138. doi: 10.1016/j.jobe.2024.110138.
dc.relation.referencesen[29] Sardarbekova, E.K., Shukurbek, U.K., & Sarkarov, U.T. (2022). Optimisation of technological parameters of ceramic material based on mechanically activated loams. Science and Innovative Technologies, 22(1), 192-199.
dc.relation.referencesen[30] Seddighi, F., Pachideh, G., & Salimbahrami, S.B. (2021). A study of mechanical and microstructures properties of autoclaved aerated concrete containing nano-graphene. Journal of Building Engineering, 43, article number 103106. doi: 10.1016/J.JOBE.2021.103106.
dc.relation.referencesen[31] Shumakov, I., Miroshnikov, V., Younis, B., Buhaievskyi, S., & Bratishko, S. (2024). Improvement of concrete parameters by the method of sodium silicates impregnation by internal vacuum tamping. IOP Conference Series: Earth and Environmental Science, 1376, article number 012031. doi: 10.1088/1755-1315/1376/1/012031.
dc.relation.referencesen[32] Song, H., Yu, J., Oh, J.E., & Suh, J-I. (2023). Production of lightweight cementless binders using supplementary cementitious materials to replace autoclaved aerated concrete blocks. Journal of Cleaner Production, 384, article number 135397. doi: 10.1016/j.jclepro.2022.135397.
dc.relation.referencesen[33] Thakur, A., & Kumar, S. (2022). Mechanical properties and development of light weight concrete by using autoclaved aerated concrete (AAC) with aluminum powder. Materials Today: Proceedings, 56(6), 3734-3739. doi: 10.1016/j.matpr.2021.12.508.
dc.relation.referencesen[34] Timchenko, R., Krishko, D., Slynko, T., Glukhanko, S., Berezka, O., & Borak, R. (2023). Method for assessing the condition of multilayer enclosing structures. Journal of Kryvyi Rih National University, 21(1), 184-190. doi: 10.31721/2306-5451-2023-1-56-184-191.
dc.relation.referencesen[35] Walczak, P. (2023). AAC life cycle: How long can autoclaved aerated concrete buildings be used. ce/papers – Proceedings in Civil Engineering, 6(2), 41-45. doi: 10.1002/cepa.2095.
dc.relation.referencesen[36] Wang, C.Q., Mei, X.D., Zhang, C., Liu, D.S., & Xu, F.L. (2020). Mechanism study on co-processing of water-based drilling cuttings and phosphogypsum in non-autoclaved aerated concrete. Environmental Science and Pollution Research International, 27(18), 23364-23368. doi: 10.1007/s11356-020-09029-z.
dc.relation.referencesen[37] Wu, R., Dai, S., Jian, S., Huang, J., Tan, H., & Baodong, L. (2021). Utilization of solid waste high-volume calcium coal gangue in autoclaved aerated concrete: Physico-mechanical properties, hydration products and economic costs. Journal of Cleaner Production, 278, article number 123416. doi: 10.1016/j.jclepro.2020.123416.
dc.relation.referencesen[38] Xia, J., Chen, Y., Chen, J., Li, A., & Chen, T. (2021). Preparation of autoclaved aerated concrete from construction waste. IOP Conference Series: Earth and Environmental Science, 687, article number 012067. doi: 10.1088/1755-1315/687/1/012067.
dc.relation.referencesen[39] Yakovkin, I.N., Katrich, G.A., Loburets, A.T., Vedula, Yu.S., & Naumovets, A.G. (1998). Alkaline-earth overlayers on furrowed transition metal surfaces: An example of tailoring the surface properties. Progress in Surface Science, 59(1-4), 355-365. doi: 10.1016/S0079-6816(98)00061-6.
dc.relation.referencesen[40] Yusrianto, E., Marsi, N., Kassim, N., Manaf, I., & Shariff, H. (2022). Acoustic properties of autoclaved aerated concrete (AAC) based on gypsum-ceramic waste (GCW). International Journal of Integrated Engineering, 14(8), 67-76. doi: 10.30880/ijie.2022.14.08.009.
dc.relation.referencesen[41] Zhang, J, Huang, F., Wu, Y., Fu, T., Huang, B., Liu, W., & Qiu, R. (2022). Mechanical properties and interface improvement of bamboo cellulose nanofibers reinforced autoclaved aerated concrete. Cement and Concrete Composites, 134, article number 104760. doi: 10.1016/j.cemconcomp.2022.104760.
dc.relation.referencesen[42] Zhang, K., Wei, Q., Jiang, S., Shen, Z., Zhang, Y., Tang, R., Yang, A., & Chow, C. (2022). Utilization of dredged river sediment in preparing autoclaved aerated concrete blocks. Journal of Renewable Materials, 10(11), 2989-3008. doi: 10.32604/jrm.2022.019821.
dc.relation.urihttps://vsegost.com/Catalog/56/56431.shtml
dc.relation.urihttps://surli.cc/jrftjk
dc.relation.urihttps://vsegost.com/Catalog/73/73873.shtml
dc.relation.urihttps://vsegost.com/Catalog/82/82634.shtml
dc.relation.urihttps://vsegost.com/Catalog/24/2420.shtml
dc.rights.holder© Національний університет „Львівська політехніка“, 2025
dc.subjectпориста структура
dc.subjectмінеральні добавки
dc.subjectрозподіл пір
dc.subjectструктурна міцність
dc.subjectлужна активація
dc.subjectтеплоізоляційні властивості
dc.subjectporous structure
dc.subjectmineral additives
dc.subjectpore distribution
dc.subjectstructural strength
dc.subjectalkaline activation
dc.subjectthermal insulation properties
dc.subject.udc691.327.332
dc.titleDevelopment of the composition and properties of a wall block made of non-autoclaved aerated concrete based on secondary raw materials of the Kyrgyz Republic
dc.title.alternativeРозробка складу і властивості стінового блоку з неавтоклавного газобетону на основі вторинної сировини Киргизької Республіки
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025v11n1_Matyeva_A-Development_of_the_composition_46-58.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.99 KB
Format:
Plain Text
Description: