Сигнальні перетворювачі сенсорних пристроїв з функціональним поєднанням фотовольтаїчного живлення та оптичного зв’язку

dc.citation.epage145
dc.citation.issue1
dc.citation.journalTitleІнфокомунікаційні технології та електронна інженерія
dc.citation.spage132
dc.citation.volume3
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГоляка, Р.
dc.contributor.authorХільчук, М.
dc.contributor.authorШпур, О.
dc.contributor.authorHolyaka, Roman
dc.contributor.authorKhilchuk, Mykola
dc.contributor.authorShpur, Olha
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-22T10:58:31Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПроаналізовано принципи функціонування сенсорних пристроїв з поєднанням фотовольтаїчного живлення та оптичного зв’язку. Функціонування таких пристроїв забезпечується модульованим світловим потоком. Інформативним сигналом, що формує сенсорний пристрій, є QR код. Формування QR коду здійснюється із використанням мікропотужних дисплеїв на основі технологій електронних чорнил e-Ink, а зчитування цього QR коду – фотокамерою смартфона. Викладено результати розв’язання задач подальшого розвитку фотовольтаїчних сенсорних пристроїв з оптичним зв’язком, зокрема, аналізу та узагальнення принципів функціонування, модельних досліджень та прототипування сигнальних перетворювачів таких пристроїв. Проаналізовано приклади досліджень фотодіодного перетворювача із трансімпедансним підсиленням та гіраторним навантаженням. Подано макет сигнальних перетворювачів та приклади осцилограм, що отримують, виконуючи експериментальні дослідження розглянутих сигнальних перетворювачів фотовольтаїчних сенсорних пристроїв.
dc.description.abstractThe analysis of the sensor devices operation principles with photovoltaic power and optical communications have been performed. The functioning of such devices is provided by a modulated light flux. An informative signal that forms a sensor device is a QR code. The formation of a QR code is carried out using micropower displays based on e-ink electronic ink technologies, and this QR code is read by a smartphone camera. The main results of photovoltaic sensor devices development based on optical communications are presented, in particular, the analysis and generalization of operation principles, simulations and signal converters prototyping. Examples of a photo-sensor converters studies with transimpedance amplification and gyrator load are analyzed. A layout of signal converters and examples of oscillograms are presented in the course of the considered photosensor devices signal converters experimental studies.
dc.format.extent132-145
dc.format.pages14
dc.identifier.citationГоляка Р. Сигнальні перетворювачі сенсорних пристроїв з функціональним поєднанням фотовольтаїчного живлення та оптичного зв’язку / Р. Голяка, М. Хільчук, О. Шпур // Інфокомунікаційні технології та електронна інженерія. — Львів : Видавництво Львівської політехніки, 2023. — Том 3. — № 1. — С. 132–145.
dc.identifier.citationenHolyaka R. Signal transducers of sensor devices on photovoltaic power supply and optical communication / Roman Holyaka, Mykola Khilchuk, Olha Shpur // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 1. — P. 132–145.
dc.identifier.doidoi.org/10.23939/ictee2023.01.132
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111429
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofІнфокомунікаційні технології та електронна інженерія, 1 (3), 2023
dc.relation.ispartofInfocommunication Technologies and Electronic Engineering, 1 (3), 2023
dc.relation.references[1] R. Elhabyan, W. Shi and M. St-Hilaire, “Coverage protocols for wireless sensor networks: Review and future directions”, in Journal of Communications and Networks, Vol. 21, No. 1, pp. 45–60, Feb. 2019. DOI: 10.1109/JCN.2019.000005.
dc.relation.references[2] J. Nelson et al., “Wireless Sensor Network with Mesh Topology for Carbon Dioxide Monitoring in a Winery”, 2021 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT), San Diego, CA, USA, 2021, pp. 30–33. DOI: 10.1109/WiSNeT51848.2021.9413797.
dc.relation.references[3] V. Agarwal, R. A. DeCarlo and L. H. Tsoukalas, “Modeling Energy Consumption and Lifetime of a Wireless Sensor Node Operating on a Contention-Based MAC Protocol”, in IEEE Sensors Journal, Vol. 17, No. 16, pp. 5153–5168, 15 Aug.15, 2017. DOI: 10.1109/JSEN.2017.2722462.
dc.relation.references[4] J. Chen, T. Li, T. Shu and C. W. De Silva, “Rapidly-Exploring Tree With Linear Reduction: A Near-Optimal Approach for Spatiotemporal Sensor Deployment in Aquatic Fields Using Minimal Sensor Nodes”, in IEEE Sensors Journal, Vol. 18, No. 24, pp. 10225–10239, 15 Dec.15, 2018. DOI: 10.1109/JSEN.2018.2874393.
dc.relation.references[5] E. Y. Song, G. J. FitzPatrick, K. B. Lee and E. Griffor, “A Methodology for Modeling Interoperability of Smart Sensors in Smart Grids”, in IEEE Transactions on Smart Grid, Vol. 13, No. 1, pp. 555–563, Jan. 2022. DOI: 10.1109/TSG.2021.3124490.
dc.relation.references[6] J. Liu et al., “A Passive Optical Transmitter Using LC Switches for IoT Smart Dusts”, 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 2019, pp. 1–4. DOI: 10.1109/CCECE.2019.8861513.
dc.relation.references[7] A. Grimmer, W. Haselmayr and R. Wille, “Automated Dimensioning of Networked Labs-on-Chip”, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 38, No. 7, pp. 1216–1225, July 2019. DOI: 10.1109/TCAD.2018.2834402.
dc.relation.references[8] K. Wang et al., “Evolution of Short-Range Optical Wireless Communications”, in Journal of Lightwave Technology, Vol. 41, No. 4, pp. 1019–1040, 15 Feb.15, 2023. DOI: 10.1109/JLT.2022.3215590.
dc.relation.references[9] Y. Liu, Y. He, K. Chen and L. Guo, “Asynchronous Transmission for Cooperative Free-Space Optical Communication System”, in IEEE Wireless Communications Letters, Vol. 11, No. 4, pp. 766–770, April 2022. DOI: 10.1109/LWC.2022.3143214.
dc.relation.references[10] A. Memedi and F. Dressler, “Vehicular Visible Light Communications: A Survey”, in IEEE Communications Surveys & Tutorials, Vol. 23, No. 1, pp. 161–181, Firstquarter 2021. DOI: 10.1109/COMST.2020.3034224.
dc.relation.references[11] S. Razzaq, N. Mubeen and F. Qamar, “Design and Analysis of Light Fidelity Network for Indoor Wireless Connectivity”, in IEEE Access, Vol. 9, pp. 145699–145709, 2021. DOI: 10.1109/ACCESS.2021.3119361.
dc.relation.references[12] X. Li et al., “Data Fusion for Intelligent Crowd Monitoring and Management Systems: A Survey”, in IEEE Access, Vol. 9, pp. 47069–47083, 2021. DOI: 10.1109/ACCESS.2021.3060631.
dc.relation.references[13] A. Sengupta, L. Cheng and S. Cao, “Robust Multiobject Tracking Using Mmwave Radar-Camera Sensor Fusion”, in IEEE Sensors Letters, Vol. 6, No. 10, pp. 1–4, Oct. 2022, Art no. 5501304. DOI: 10.1109/LSENS. 2022.3213529.
dc.relation.references[14] S.-S. Lin, M. -C. Hu, C. -H. Lee and T. -Y. Lee, “Efficient QR Code Beautification With High Quality Visual Content”, in IEEE Transactions on Multimedia, Vol. 17, No. 9, pp. 1515–1524, Sept. 2015. DOI: 10.1109/TMM. 2015.2437711.
dc.relation.references[15] H. Cao and A. C. Kot, “Lossless Data Embedding in Electronic Inks”, in IEEE Transactions on Information Forensics and Security, Vol. 5, No. 2, pp. 314–323, June 2010. DOI: 10.1109/TIFS.2010.2046234.
dc.relation.references[16] J. D. Downie, M. Li and S. Makovejs, “Optical fibers for flexible networks and systems”, in Journal of Optical Communications and Networking, Vol. 8, No. 7, pp. A1–A11, July 2016.
dc.relation.references[17] F. Karabacak, H. Koc and A. Ceber, “A low power electronic sticker for vehicle identification system using proprietary active RFID wireless protocol”, 2013 International Conference on Connected Vehicles and Expo (ICCVE), Las Vegas, NV, USA, 2013, pp. 847–852. DOI: 10.1109/ICCVE.2013.6799913.
dc.relation.references[18] J. Rezazadeh, R. Subramanian, K. Sandrasegaran, X. Kong, M. Moradi and F. Khodamoradi, “Novel iBeacon Placement for Indoor Positioning in IoT”, in IEEE Sensors Journal, Vol. 18, No. 24, pp. 10240–10247, 15 Dec.15, 2018. DOI: 10.1109/JSEN.2018.2875037.
dc.relation.references[19] T. Ruan, Z. J. Chew and M. Zhu, “Energy-Aware Approaches for Energy Harvesting Powered Wireless Sensor Nodes”, in IEEE Sensors Journal, Vol. 17, No. 7, pp. 2165–2173, 1 April1, 2017. DOI: 10.1109/JSEN.2017. 2665680.
dc.relation.references[20] P. Liu, X. Yu, J. Li and S. Li, “Energy Conversion Efficiency of Electromagnetic Launcher With Capacitor-Based Pulsed Power System”, in IEEE Transactions on Plasma Science, Vol. 41, No. 5, pp. 1295–1299, May 2013. DOI: 10.1109/TPS.2013.2251367.
dc.relation.references[21] S.-H. Jo, H.-W. Cho and H.-J. Yoo, “A Fully Reconfigurable Universal Sensor Analog Front-End IC for the Internet of Things Era”, in IEEE Sensors Journal, Vol. 19, No. 7, pp. 2621–2633, 1 April1, 2019. DOI: 10.1109/JSEN.2018.2890211.
dc.relation.references[22] H. Radner, J. Stange, L. Büttner and J. Czarske, “Field-Programmable System-on-Chip-Based Control System for Real-Time Distortion Correction in Optical Imaging”, in IEEE Transactions on Industrial Electronics, Vol. 68, No. 4, pp. 3370–3379, April 2021. DOI: 10.1109/TIE.2020.2979557.
dc.relation.references[23] M. Machnoor and G. Lazzi, “Wireless Power Transfer: Types of Reflected Impedances and Maximum Power Transfer Theorem”, in IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 10, pp. 1709–1713, Oct. 2020. DOI: 10.1109/LAWP.2020.3014357.
dc.relation.references[24] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani and Y. C. Eldar, “Beam Focusing for Near-Field Multiuser MIMO Communications”, in IEEE Transactions on Wireless Communications, Vol. 21, No. 9, pp. 7476–7490, Sept. 2022. DOI: 10.1109/TWC.2022.3158894.
dc.relation.references[25] 25 X. Ma, S. Bader and B. Oelmann, “Power Estimation for Indoor Light Energy Harvesting Systems”, in IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 10, pp. 7513–7521, Oct. 2020. DOI: 10.1109/TIM.2020.2984145.
dc.relation.references[26] Hua Yu, Qiuqin Yue, “Indoor Light Energy Harvesting System for Energy-aware Wireless Sensor Node”, Energy Procedia, Vol. 16, Part B, 2012, pp. 1027–1032. doi.org/10.1016/j.egypro.2012.01.164.
dc.relation.references[27] G. Dziallas, A. Fatemi, A. Malignaggi and G. Kahmen, “A 97-GHz 66-dBΩ SiGe BiCMOS Low-Noise Transimpedance Amplifier for Optical Receivers”, in IEEE Microwave and Wireless Components Letters, Vol. 31, No. 12, pp. 1295–1298, Dec. 2021. DOI: 10.1109/LMWC.2021.3103106.
dc.relation.references[28] Барило Г. І., Гельжинський І. І., Марусенкова Т. А., Кривенчук Ю. П., Хільчук М. О., Голяка Р. Л., Бойко О. Апаратно-програмна вбудована система частотної селекції сигналу на основі гіратора // Вимірювальна техніка та метрологія. Вип. 82, № 1, 2021. С. 37–42. https://doi.org/10.23939/istcmtm2021.01.037
dc.relation.references[29] Roman Holyaka, Gryhoriy Barylo, Tetyana Marusenkova, Mykola Khilchuk, Oksana Boyko. Programmable Mixed Signal Front-End for Sensor Applications // IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv. 2022. DOI: 10.1109/TCSET55632.2022.9766863. (Scopus)
dc.relation.references[30] Grygoriy I. Barylo, Oksana V. Boyko, Ihor I. Gelzynskyy, Roman L. Holyaka, Zenon Y. Hotra, Oleksandra Z. Hotra, Tetyana A. Marusenkova, and Mykola O. Khilchuk. Software complex for optoelectronic-electronic components and sensors research. Proc. SPIE 12126, Fifteenth International Conference on Correlation Optics, 121262K (20 December 2021). https://doi.org/10.1117/12.2617390
dc.relation.references[31] Барило Г. І., Голяка Р. Л., Готра З. Ю. Сигнальні перетворювачі мікроелектронних сенсорів імпедансного типу: колективна монографія. Львів: Ліга-прес, 2017. 182 с.
dc.relation.referencesen[1] R. Elhabyan, W. Shi and M. St-Hilaire, "Coverage protocols for wireless sensor networks: Review and future directions", in Journal of Communications and Networks, Vol. 21, No. 1, pp. 45–60, Feb. 2019. DOI: 10.1109/JCN.2019.000005.
dc.relation.referencesen[2] J. Nelson et al., "Wireless Sensor Network with Mesh Topology for Carbon Dioxide Monitoring in a Winery", 2021 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT), San Diego, CA, USA, 2021, pp. 30–33. DOI: 10.1109/WiSNeT51848.2021.9413797.
dc.relation.referencesen[3] V. Agarwal, R. A. DeCarlo and L. H. Tsoukalas, "Modeling Energy Consumption and Lifetime of a Wireless Sensor Node Operating on a Contention-Based MAC Protocol", in IEEE Sensors Journal, Vol. 17, No. 16, pp. 5153–5168, 15 Aug.15, 2017. DOI: 10.1109/JSEN.2017.2722462.
dc.relation.referencesen[4] J. Chen, T. Li, T. Shu and C. W. De Silva, "Rapidly-Exploring Tree With Linear Reduction: A Near-Optimal Approach for Spatiotemporal Sensor Deployment in Aquatic Fields Using Minimal Sensor Nodes", in IEEE Sensors Journal, Vol. 18, No. 24, pp. 10225–10239, 15 Dec.15, 2018. DOI: 10.1109/JSEN.2018.2874393.
dc.relation.referencesen[5] E. Y. Song, G. J. FitzPatrick, K. B. Lee and E. Griffor, "A Methodology for Modeling Interoperability of Smart Sensors in Smart Grids", in IEEE Transactions on Smart Grid, Vol. 13, No. 1, pp. 555–563, Jan. 2022. DOI: 10.1109/TSG.2021.3124490.
dc.relation.referencesen[6] J. Liu et al., "A Passive Optical Transmitter Using LC Switches for IoT Smart Dusts", 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 2019, pp. 1–4. DOI: 10.1109/CCECE.2019.8861513.
dc.relation.referencesen[7] A. Grimmer, W. Haselmayr and R. Wille, "Automated Dimensioning of Networked Labs-on-Chip", in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 38, No. 7, pp. 1216–1225, July 2019. DOI: 10.1109/TCAD.2018.2834402.
dc.relation.referencesen[8] K. Wang et al., "Evolution of Short-Range Optical Wireless Communications", in Journal of Lightwave Technology, Vol. 41, No. 4, pp. 1019–1040, 15 Feb.15, 2023. DOI: 10.1109/JLT.2022.3215590.
dc.relation.referencesen[9] Y. Liu, Y. He, K. Chen and L. Guo, "Asynchronous Transmission for Cooperative Free-Space Optical Communication System", in IEEE Wireless Communications Letters, Vol. 11, No. 4, pp. 766–770, April 2022. DOI: 10.1109/LWC.2022.3143214.
dc.relation.referencesen[10] A. Memedi and F. Dressler, "Vehicular Visible Light Communications: A Survey", in IEEE Communications Surveys & Tutorials, Vol. 23, No. 1, pp. 161–181, Firstquarter 2021. DOI: 10.1109/COMST.2020.3034224.
dc.relation.referencesen[11] S. Razzaq, N. Mubeen and F. Qamar, "Design and Analysis of Light Fidelity Network for Indoor Wireless Connectivity", in IEEE Access, Vol. 9, pp. 145699–145709, 2021. DOI: 10.1109/ACCESS.2021.3119361.
dc.relation.referencesen[12] X. Li et al., "Data Fusion for Intelligent Crowd Monitoring and Management Systems: A Survey", in IEEE Access, Vol. 9, pp. 47069–47083, 2021. DOI: 10.1109/ACCESS.2021.3060631.
dc.relation.referencesen[13] A. Sengupta, L. Cheng and S. Cao, "Robust Multiobject Tracking Using Mmwave Radar-Camera Sensor Fusion", in IEEE Sensors Letters, Vol. 6, No. 10, pp. 1–4, Oct. 2022, Art no. 5501304. DOI: 10.1109/LSENS. 2022.3213529.
dc.relation.referencesen[14] S.-S. Lin, M. -C. Hu, C. -H. Lee and T. -Y. Lee, "Efficient QR Code Beautification With High Quality Visual Content", in IEEE Transactions on Multimedia, Vol. 17, No. 9, pp. 1515–1524, Sept. 2015. DOI: 10.1109/TMM. 2015.2437711.
dc.relation.referencesen[15] H. Cao and A. C. Kot, "Lossless Data Embedding in Electronic Inks", in IEEE Transactions on Information Forensics and Security, Vol. 5, No. 2, pp. 314–323, June 2010. DOI: 10.1109/TIFS.2010.2046234.
dc.relation.referencesen[16] J. D. Downie, M. Li and S. Makovejs, "Optical fibers for flexible networks and systems", in Journal of Optical Communications and Networking, Vol. 8, No. 7, pp. A1–A11, July 2016.
dc.relation.referencesen[17] F. Karabacak, H. Koc and A. Ceber, "A low power electronic sticker for vehicle identification system using proprietary active RFID wireless protocol", 2013 International Conference on Connected Vehicles and Expo (ICCVE), Las Vegas, NV, USA, 2013, pp. 847–852. DOI: 10.1109/ICCVE.2013.6799913.
dc.relation.referencesen[18] J. Rezazadeh, R. Subramanian, K. Sandrasegaran, X. Kong, M. Moradi and F. Khodamoradi, "Novel iBeacon Placement for Indoor Positioning in IoT", in IEEE Sensors Journal, Vol. 18, No. 24, pp. 10240–10247, 15 Dec.15, 2018. DOI: 10.1109/JSEN.2018.2875037.
dc.relation.referencesen[19] T. Ruan, Z. J. Chew and M. Zhu, "Energy-Aware Approaches for Energy Harvesting Powered Wireless Sensor Nodes", in IEEE Sensors Journal, Vol. 17, No. 7, pp. 2165–2173, 1 April1, 2017. DOI: 10.1109/JSEN.2017. 2665680.
dc.relation.referencesen[20] P. Liu, X. Yu, J. Li and S. Li, "Energy Conversion Efficiency of Electromagnetic Launcher With Capacitor-Based Pulsed Power System", in IEEE Transactions on Plasma Science, Vol. 41, No. 5, pp. 1295–1299, May 2013. DOI: 10.1109/TPS.2013.2251367.
dc.relation.referencesen[21] S.-H. Jo, H.-W. Cho and H.-J. Yoo, "A Fully Reconfigurable Universal Sensor Analog Front-End IC for the Internet of Things Era", in IEEE Sensors Journal, Vol. 19, No. 7, pp. 2621–2633, 1 April1, 2019. DOI: 10.1109/JSEN.2018.2890211.
dc.relation.referencesen[22] H. Radner, J. Stange, L. Büttner and J. Czarske, "Field-Programmable System-on-Chip-Based Control System for Real-Time Distortion Correction in Optical Imaging", in IEEE Transactions on Industrial Electronics, Vol. 68, No. 4, pp. 3370–3379, April 2021. DOI: 10.1109/TIE.2020.2979557.
dc.relation.referencesen[23] M. Machnoor and G. Lazzi, "Wireless Power Transfer: Types of Reflected Impedances and Maximum Power Transfer Theorem", in IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 10, pp. 1709–1713, Oct. 2020. DOI: 10.1109/LAWP.2020.3014357.
dc.relation.referencesen[24] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani and Y. C. Eldar, "Beam Focusing for Near-Field Multiuser MIMO Communications", in IEEE Transactions on Wireless Communications, Vol. 21, No. 9, pp. 7476–7490, Sept. 2022. DOI: 10.1109/TWC.2022.3158894.
dc.relation.referencesen[25] 25 X. Ma, S. Bader and B. Oelmann, "Power Estimation for Indoor Light Energy Harvesting Systems", in IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 10, pp. 7513–7521, Oct. 2020. DOI: 10.1109/TIM.2020.2984145.
dc.relation.referencesen[26] Hua Yu, Qiuqin Yue, "Indoor Light Energy Harvesting System for Energy-aware Wireless Sensor Node", Energy Procedia, Vol. 16, Part B, 2012, pp. 1027–1032. doi.org/10.1016/j.egypro.2012.01.164.
dc.relation.referencesen[27] G. Dziallas, A. Fatemi, A. Malignaggi and G. Kahmen, "A 97-GHz 66-dBO SiGe BiCMOS Low-Noise Transimpedance Amplifier for Optical Receivers", in IEEE Microwave and Wireless Components Letters, Vol. 31, No. 12, pp. 1295–1298, Dec. 2021. DOI: 10.1109/LMWC.2021.3103106.
dc.relation.referencesen[28] Barylo H. I., Helzhynskyi I. I., Marusenkova T. A., Kryvenchuk Yu. P., Khilchuk M. O., Holiaka R. L., Boiko O. Aparatno-prohramna vbudovana systema chastotnoi selektsii syhnalu na osnovi hiratora, Vymiriuvalna tekhnika ta metrolohiia. Iss. 82, No 1, 2021. P. 37–42. https://doi.org/10.23939/istcmtm2021.01.037
dc.relation.referencesen[29] Roman Holyaka, Gryhoriy Barylo, Tetyana Marusenkova, Mykola Khilchuk, Oksana Boyko. Programmable Mixed Signal Front-End for Sensor Applications, IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). Lviv. 2022. DOI: 10.1109/TCSET55632.2022.9766863. (Scopus)
dc.relation.referencesen[30] Grygoriy I. Barylo, Oksana V. Boyko, Ihor I. Gelzynskyy, Roman L. Holyaka, Zenon Y. Hotra, Oleksandra Z. Hotra, Tetyana A. Marusenkova, and Mykola O. Khilchuk. Software complex for optoelectronic-electronic components and sensors research. Proc. SPIE 12126, Fifteenth International Conference on Correlation Optics, 121262K (20 December 2021). https://doi.org/10.1117/12.2617390
dc.relation.referencesen[31] Barylo H. I., Holiaka R. L., Hotra Z. Yu. Syhnalni peretvoriuvachi mikroelektronnykh sensoriv impedansnoho typu: kolektyvna monograph. Lviv: Liha-pres, 2017. 182 p.
dc.relation.urihttps://doi.org/10.23939/istcmtm2021.01.037
dc.relation.urihttps://doi.org/10.1117/12.2617390
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectсенсор
dc.subjectсигнальне перетворення
dc.subjectфотоперетворювач
dc.subjectоптичний зв’язок
dc.subjectsensor
dc.subjectsignal transducing
dc.subjectphototransducer
dc.subjectoptical communication
dc.subject.udc621.3
dc.titleСигнальні перетворювачі сенсорних пристроїв з функціональним поєднанням фотовольтаїчного живлення та оптичного зв’язку
dc.title.alternativeSignal transducers of sensor devices on photovoltaic power supply and optical communication
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v3n1_Holyaka_R-Signal_transducers_of_sensor_132-145.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v3n1_Holyaka_R-Signal_transducers_of_sensor_132-145__COVER.png
Size:
1.17 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: