Injection of cracks in a RC beam with epoxy resin using the gravity flow method
dc.citation.epage | 92 | |
dc.citation.issue | 2 | |
dc.citation.spage | 85 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Клим, А. Б. | |
dc.contributor.author | Бліхарський, Я. З. | |
dc.contributor.author | Klym, A. | |
dc.contributor.author | Blikharskyy, Ya. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-05-29T11:44:01Z | |
dc.date.available | 2024-05-29T11:44:01Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Тріщини у залізобетонних балках створюють серйозну загрозу соціальній безпеці та навколишньому середовищу, через деякий час експлуатації чи навіть у ранньому віці, аж до повної втрати несучої здатності й руйнування. Відновлення несучої здатності залізобетонних балок способом ін’єктування тріщин є одним із найдієвіших та найрактичніших способів виконання ремонту відповідно до сучасних тенденцій. Сьогодні технологічний прогрес дає змогу удосконалювати матеріали для ін’єктування, а також власне заповнення тріщин цими матеріалами. Проте такий підхід із застосуванням спеціалізованого обладнання здорожчує ремонт пошкоджених залізобетонних балок, що не завжди раціонально. Тому в статті після аналізування методів ін’єктування тріщин у залізобетонних балках та конструкціях запропоновано економічно доцільний метод ін’єктування залізобетонних балок, що дасть змогу запобігти необхідності дорогого ремонту. Основний підхід запропонованого методу ін’єктування тріщини полягає у подаванні епоксидної смоли в тріщину, що відбувається самопливом (без спеціалізованого обладнання і тиску). У роботі також наведено послідовність підготовки бічної та внутрішньої ділянок тріщини залізобетонної балки до ін’єктування епоксидною смолою. Метод ін’єктування тріщин реалізовано комплексно із відновленням стиснутої зони бетону залізобетонної балки. Результати випробовування підтвердили ефективність методу ін’єктування тріщини, оскільки не виявлено новоутворених тріщин у місцях ін’єктування. Ін’єктуванням тріщин комплексно із методом відновлення стиснутої зони бетону розчином Sika MonoTop – 4012 також досягнуто відновлення несучої здатності пошкодженої залізобетонної балки на 115 %, що на 15 % більше, ніж під час попереднього випробовування непошкодженої балки-близнюка. | |
dc.description.abstract | The restoration of the load-bearing capacity of RC beams through crack injection is one of the most efficient and practical methods for executing repairs in the field of civil engineering. In the article, following an analysis of crack injection methods in RC structures, an economically viable method for injecting RC beams is proposed. The core approach of the proposed crack injection method involves the process of introducing epoxy resin into the crack, which occurs by gravity flow (without specialized equipment and pressure). The paper outlines a systematic process for preparing the crack in the RC beam for epoxy resin injection. The crack injection method was conducted comprehensively, including the restoration of the compressed concrete zone within the RC beam. The test results demonstrated the effectiveness of the crack injection method, as there were no new crack formations at the injection sites, and the load-bearing capacity of the RC beam was restored to 115 %. | |
dc.format.extent | 85-92 | |
dc.format.pages | 8 | |
dc.identifier.citation | Klym A. Injection of cracks in a RC beam with epoxy resin using the gravity flow method / A. Klym, Ya. Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 85–92. | |
dc.identifier.citationen | Klym A. Injection of cracks in a RC beam with epoxy resin using the gravity flow method / A. Klym, Ya. Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 85–92. | |
dc.identifier.doi | doi.org/10.23939/jtbp2023.02.085 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/62177 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 2 (5), 2023 | |
dc.relation.references | Akram, A.(2021).The Overview of Fracture Mechanics Models for Concrete. Architecture, Civil Engineering, Environment,14(1) 47-57. doi.org/10.21307/acee-2021-005 https://doi.org/10.21307/acee-2021-005 | |
dc.relation.references | Al-Sulaimani, A. A. A., Al-Sulaimani, H. E., & Al-Sulaimani, A. H. (2022). Repair of reinforced concrete beams with injecting nanocomposites. Journal of Building Engineering, 38, 103560. doi:10.1016/j.jobe.2022.103560 | |
dc.relation.references | Bobalo, T., Blikharskyy, Y., Kopiika, N., & Volynets, M. (2020). Serviceability of RC beams reinforced with high strength rebar's and steel plate. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 25-33). Springer International Publishing. doi:10.1088/1757-899X/708/1/012045 https://doi.org/10.1088/1757-899X/708/1/012045 | |
dc.relation.references | Carino, N. J., & Clifton, J. R. (1995). Prediction of cracking in reinforced concrete structures. Gaithersburg, MD, USA: US Department of Commerce, National Institute of Standards and Technology. https://doi.org/10.6028/NIST.IR.5634 | |
dc.relation.references | Golewski GL. The Phenomenon of Cracking in Cement Concretes and Reinforced Concrete Structures: The Mechanism of Cracks Formation, Causes of Their Initiation, Types and Places of Occurrence, and Methods of Detection-A Review. Buildings. 2023; 13(3):765. doi.org/10.3390/buildings13030765 https://doi.org/10.3390/buildings13030765 | |
dc.relation.references | Gupta, A. K., & Akbar, H. (1984). Cracking in reinforced concrete analysis. Journal of Structural Engineering, 110(8), 1735-1746. doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735) https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735) | |
dc.relation.references | Issa, C. A., & Debs, P. (2007). Experimental study of epoxy repairing of cracks in concrete. Construction and Building Materials, 21(1), 157-163. doi.org/10.1016/j.conbuildmat.2005.06.030 https://doi.org/10.1016/j.conbuildmat.2005.06.030 | |
dc.relation.references | Karpiuk, V., Somina, Y., Maistrenko, O. (2020). Engineering method of calculation of beam structures inclined sections based on the fatigue fracture model. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 135-144). Springer International Publishing. doi.org/10.1007/978-3-030-27011-7_17 https://doi.org/10.1007/978-3-030-27011-7_17 | |
dc.relation.references | Kim, J.-W., Lee, J.-H., Lee, S.-H., Kim, M.-H., & Kim, K.-S. (2022). Influence of injection pressure on the effectiveness of epoxy resin injection repair of concrete beams with cracks. Journal of Structural Engineering, 148(5), 04022088. doi:10.1061/(asce)st.1943-541x.0002967 https://doi.org/10.1061/(ASCE)ST.1943-541X.0002967 | |
dc.relation.references | Li, Y., & Li, X. (2023). Repair methods for cracks in reinforced concrete structures: A review. Construction and Building Materials, 309, 126798. doi:10.1016/j.conbuildmat.2022.126798 https://doi.org/10.1016/j.conbuildmat.2022.126798 | |
dc.relation.references | Liu, X., & Wang, Y. (2023). Crack formation in reinforced concrete structures: A numerical study. Engineering Structures, 251, 112686. doi:10.1016/j.engstruct.2022.112686 https://doi.org/10.1016/j.engstruct.2021.113565 | |
dc.relation.references | Ma, M. L., Wu, A. C., Chen, J. C., Chen, C. Y., & Wang, A. J. (2019). Repair of shear cracks in reinforced concrete beams using a novel fiber-reinforced polymer injection system. Construction and Building Materials, 218, 1165-1174. doi:10.1016/j.conbuildmat.2019.03.048 https://doi.org/10.1016/j.conbuildmat.2019.03.048 | |
dc.relation.references | Pathak, S. S., & Vesmawala, G. R. (2022). Influence of TiO2 and fly ash on fracture parameters of concrete notched beams. Journal of Advanced Concrete Technology, 20(10), 624-639. doi.org/10.3151/jact.20.624 https://doi.org/10.3151/jact.20.624 | |
dc.relation.references | Saliah, S. N. M., Nor, N. M., Abd Rahman, N., Abdullah, S., & Tahir, M. S. (2021). Evaluation of severely damaged reinforced concrete beam repaired with epoxy injection using acoustic emission technique. Theoretical and Applied Fracture Mechanics, 112, 102890. doi.org/10.1016/j.tafmec.2020.102890 https://doi.org/10.1016/j.tafmec.2020.102890 | |
dc.relation.references | Sika MonoTop®-4012, https://gbr.sika.com/content/dam/dms/gb01/b/sika-monotop-4012.pdf | |
dc.relation.references | Sikadur®-30, https://gbr.sika.com/content/dam/dms/gb01/w/sikadur_-30.pdf | |
dc.relation.references | Sikadur®-52 Injection Normal, https://industry.sika.com/content/dam/dms/gb01/7/sikadur_-52_injectionno... | |
dc.relation.references | Sylovaniuk, V., Revenko, A., & Lisnychuk, A. (2015). On Short-Term and Long-Term Strength of Restored Building Structure Elements Using Injection Technologies. Bulletin of Ternopil National Technical University, (3), 18-23. doi:10.15830/btu.2015.03.028 | |
dc.relation.references | Vatulia, G., Orel, Y., & Kovalov, M. (2014). Carrying capacity definition of steel-concrete beams with external reinforcement under the fire impact. Applied Mechanics and Materials, 617, 167-170. doi.org/10.4028/www.scientific.net/AMM.617.167 https://doi.org/10.4028/www.scientific.net/AMM.617.167 | |
dc.relation.references | Verma, S. K., Bhadauria, S. S., & Akhtar, S. (2014). Probabilistic evaluation of service life for reinforced concrete structures. Chinese Journal of Engineering, 2014, 1-8. doi.org/10.1155/2014/648438 https://doi.org/10.1155/2014/648438 | |
dc.relation.references | Xia, Y., & Chen, Z. (2023). Crack formation in reinforced concrete structures: A review. Construction and Building Materials, 310, 127099. doi:10.1016/j.conbuildmat.2022.127099 https://doi.org/10.1016/j.conbuildmat.2022.127099 | |
dc.relation.references | Zhang, J., & Li, Q. (2023). Crack formation in reinforced concrete structures: A case study. Journal of Construction Engineering and Management, 149(3), 04023027. doi:10.1061/(ASCE)CO.1943-7862.0002418 https://doi.org/10.1061/(ASCE)CO.1943-7862.0002418 | |
dc.relation.references | Zhang, W., & Wang, Y. (2023). A new repair method for cracks in reinforced concrete structures. Journal of Construction Engineering and Management, 149(3), 04023028. doi:10.1061/(ASCE)CO.1943-7862.0002419 https://doi.org/10.1061/(ASCE)CO.1943-7862.0002419 | |
dc.relation.referencesen | Akram, A.(2021).The Overview of Fracture Mechanics Models for Concrete. Architecture, Civil Engineering, Environment,14(1) 47-57. doi.org/10.21307/acee-2021-005 https://doi.org/10.21307/acee-2021-005 | |
dc.relation.referencesen | Al-Sulaimani, A. A. A., Al-Sulaimani, H. E., & Al-Sulaimani, A. H. (2022). Repair of reinforced concrete beams with injecting nanocomposites. Journal of Building Engineering, 38, 103560. doi:10.1016/j.jobe.2022.103560 | |
dc.relation.referencesen | Bobalo, T., Blikharskyy, Y., Kopiika, N., & Volynets, M. (2020). Serviceability of RC beams reinforced with high strength rebar's and steel plate. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 25-33). Springer International Publishing. doi:10.1088/1757-899X/708/1/012045 https://doi.org/10.1088/1757-899X/708/1/012045 | |
dc.relation.referencesen | Carino, N. J., & Clifton, J. R. (1995). Prediction of cracking in reinforced concrete structures. Gaithersburg, MD, USA: US Department of Commerce, National Institute of Standards and Technology. https://doi.org/10.6028/NIST.IR.5634 | |
dc.relation.referencesen | Golewski GL. The Phenomenon of Cracking in Cement Concretes and Reinforced Concrete Structures: The Mechanism of Cracks Formation, Causes of Their Initiation, Types and Places of Occurrence, and Methods of Detection-A Review. Buildings. 2023; 13(3):765. doi.org/10.3390/buildings13030765 https://doi.org/10.3390/buildings13030765 | |
dc.relation.referencesen | Gupta, A. K., & Akbar, H. (1984). Cracking in reinforced concrete analysis. Journal of Structural Engineering, 110(8), 1735-1746. doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735) https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735) | |
dc.relation.referencesen | Issa, C. A., & Debs, P. (2007). Experimental study of epoxy repairing of cracks in concrete. Construction and Building Materials, 21(1), 157-163. doi.org/10.1016/j.conbuildmat.2005.06.030 https://doi.org/10.1016/j.conbuildmat.2005.06.030 | |
dc.relation.referencesen | Karpiuk, V., Somina, Y., Maistrenko, O. (2020). Engineering method of calculation of beam structures inclined sections based on the fatigue fracture model. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 135-144). Springer International Publishing. doi.org/10.1007/978-3-030-27011-7_17 https://doi.org/10.1007/978-3-030-27011-7_17 | |
dc.relation.referencesen | Kim, J.-W., Lee, J.-H., Lee, S.-H., Kim, M.-H., & Kim, K.-S. (2022). Influence of injection pressure on the effectiveness of epoxy resin injection repair of concrete beams with cracks. Journal of Structural Engineering, 148(5), 04022088. doi:10.1061/(asce)st.1943-541x.0002967 https://doi.org/10.1061/(ASCE)ST.1943-541X.0002967 | |
dc.relation.referencesen | Li, Y., & Li, X. (2023). Repair methods for cracks in reinforced concrete structures: A review. Construction and Building Materials, 309, 126798. doi:10.1016/j.conbuildmat.2022.126798 https://doi.org/10.1016/j.conbuildmat.2022.126798 | |
dc.relation.referencesen | Liu, X., & Wang, Y. (2023). Crack formation in reinforced concrete structures: A numerical study. Engineering Structures, 251, 112686. doi:10.1016/j.engstruct.2022.112686 https://doi.org/10.1016/j.engstruct.2021.113565 | |
dc.relation.referencesen | Ma, M. L., Wu, A. C., Chen, J. C., Chen, C. Y., & Wang, A. J. (2019). Repair of shear cracks in reinforced concrete beams using a novel fiber-reinforced polymer injection system. Construction and Building Materials, 218, 1165-1174. doi:10.1016/j.conbuildmat.2019.03.048 https://doi.org/10.1016/j.conbuildmat.2019.03.048 | |
dc.relation.referencesen | Pathak, S. S., & Vesmawala, G. R. (2022). Influence of TiO2 and fly ash on fracture parameters of concrete notched beams. Journal of Advanced Concrete Technology, 20(10), 624-639. doi.org/10.3151/jact.20.624 https://doi.org/10.3151/jact.20.624 | |
dc.relation.referencesen | Saliah, S. N. M., Nor, N. M., Abd Rahman, N., Abdullah, S., & Tahir, M. S. (2021). Evaluation of severely damaged reinforced concrete beam repaired with epoxy injection using acoustic emission technique. Theoretical and Applied Fracture Mechanics, 112, 102890. doi.org/10.1016/j.tafmec.2020.102890 https://doi.org/10.1016/j.tafmec.2020.102890 | |
dc.relation.referencesen | Sika MonoTop®-4012, https://gbr.sika.com/content/dam/dms/gb01/b/sika-monotop-4012.pdf | |
dc.relation.referencesen | Sikadur®-30, https://gbr.sika.com/content/dam/dms/gb01/w/sikadur_-30.pdf | |
dc.relation.referencesen | Sikadur®-52 Injection Normal, https://industry.sika.com/content/dam/dms/gb01/7/sikadur_-52_injectionno... | |
dc.relation.referencesen | Sylovaniuk, V., Revenko, A., & Lisnychuk, A. (2015). On Short-Term and Long-Term Strength of Restored Building Structure Elements Using Injection Technologies. Bulletin of Ternopil National Technical University, (3), 18-23. doi:10.15830/btu.2015.03.028 | |
dc.relation.referencesen | Vatulia, G., Orel, Y., & Kovalov, M. (2014). Carrying capacity definition of steel-concrete beams with external reinforcement under the fire impact. Applied Mechanics and Materials, 617, 167-170. doi.org/10.4028/www.scientific.net/AMM.617.167 https://doi.org/10.4028/www.scientific.net/AMM.617.167 | |
dc.relation.referencesen | Verma, S. K., Bhadauria, S. S., & Akhtar, S. (2014). Probabilistic evaluation of service life for reinforced concrete structures. Chinese Journal of Engineering, 2014, 1-8. doi.org/10.1155/2014/648438 https://doi.org/10.1155/2014/648438 | |
dc.relation.referencesen | Xia, Y., & Chen, Z. (2023). Crack formation in reinforced concrete structures: A review. Construction and Building Materials, 310, 127099. doi:10.1016/j.conbuildmat.2022.127099 https://doi.org/10.1016/j.conbuildmat.2022.127099 | |
dc.relation.referencesen | Zhang, J., & Li, Q. (2023). Crack formation in reinforced concrete structures: A case study. Journal of Construction Engineering and Management, 149(3), 04023027. doi:10.1061/(ASCE)CO.1943-7862.0002418 https://doi.org/10.1061/(ASCE)CO.1943-7862.0002418 | |
dc.relation.referencesen | Zhang, W., & Wang, Y. (2023). A new repair method for cracks in reinforced concrete structures. Journal of Construction Engineering and Management, 149(3), 04023028. doi:10.1061/(ASCE)CO.1943-7862.0002419 https://doi.org/10.1061/(ASCE)CO.1943-7862.0002419 | |
dc.relation.uri | https://doi.org/10.21307/acee-2021-005 | |
dc.relation.uri | https://doi.org/10.1088/1757-899X/708/1/012045 | |
dc.relation.uri | https://doi.org/10.6028/NIST.IR.5634 | |
dc.relation.uri | https://doi.org/10.3390/buildings13030765 | |
dc.relation.uri | https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2005.06.030 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-27011-7_17 | |
dc.relation.uri | https://doi.org/10.1061/(ASCE)ST.1943-541X.0002967 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2022.126798 | |
dc.relation.uri | https://doi.org/10.1016/j.engstruct.2021.113565 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2019.03.048 | |
dc.relation.uri | https://doi.org/10.3151/jact.20.624 | |
dc.relation.uri | https://doi.org/10.1016/j.tafmec.2020.102890 | |
dc.relation.uri | https://gbr.sika.com/content/dam/dms/gb01/b/sika-monotop-4012.pdf | |
dc.relation.uri | https://gbr.sika.com/content/dam/dms/gb01/w/sikadur_-30.pdf | |
dc.relation.uri | https://industry.sika.com/content/dam/dms/gb01/7/sikadur_-52_injectionno.. | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/AMM.617.167 | |
dc.relation.uri | https://doi.org/10.1155/2014/648438 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2022.127099 | |
dc.relation.uri | https://doi.org/10.1061/(ASCE)CO.1943-7862.0002418 | |
dc.relation.uri | https://doi.org/10.1061/(ASCE)CO.1943-7862.0002419 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Klym A., Blikharskyy Ya., 2023 | |
dc.subject | залізобетонна балка | |
dc.subject | пошкодження | |
dc.subject | відновлення | |
dc.subject | тріщина | |
dc.subject | епоксидна смола | |
dc.subject | ін’єктування | |
dc.subject | RC beam | |
dc.subject | damage | |
dc.subject | restoration | |
dc.subject | crack | |
dc.subject | epoxy resin | |
dc.subject | injection | |
dc.title | Injection of cracks in a RC beam with epoxy resin using the gravity flow method | |
dc.title.alternative | Ін’єктування тріщини залізобетонної балки епоксидною смолою методом самопливу | |
dc.type | Article |
Files
License bundle
1 - 1 of 1