Injection of cracks in a RC beam with epoxy resin using the gravity flow method

dc.citation.epage92
dc.citation.issue2
dc.citation.spage85
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКлим, А. Б.
dc.contributor.authorБліхарський, Я. З.
dc.contributor.authorKlym, A.
dc.contributor.authorBlikharskyy, Ya.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-05-29T11:44:01Z
dc.date.available2024-05-29T11:44:01Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractТріщини у залізобетонних балках створюють серйозну загрозу соціальній безпеці та навколишньому середовищу, через деякий час експлуатації чи навіть у ранньому віці, аж до повної втрати несучої здатності й руйнування. Відновлення несучої здатності залізобетонних балок способом ін’єктування тріщин є одним із найдієвіших та найрактичніших способів виконання ремонту відповідно до сучасних тенденцій. Сьогодні технологічний прогрес дає змогу удосконалювати матеріали для ін’єктування, а також власне заповнення тріщин цими матеріалами. Проте такий підхід із застосуванням спеціалізованого обладнання здорожчує ремонт пошкоджених залізобетонних балок, що не завжди раціонально. Тому в статті після аналізування методів ін’єктування тріщин у залізобетонних балках та конструкціях запропоновано економічно доцільний метод ін’єктування залізобетонних балок, що дасть змогу запобігти необхідності дорогого ремонту. Основний підхід запропонованого методу ін’єктування тріщини полягає у подаванні епоксидної смоли в тріщину, що відбувається самопливом (без спеціалізованого обладнання і тиску). У роботі також наведено послідовність підготовки бічної та внутрішньої ділянок тріщини залізобетонної балки до ін’єктування епоксидною смолою. Метод ін’єктування тріщин реалізовано комплексно із відновленням стиснутої зони бетону залізобетонної балки. Результати випробовування підтвердили ефективність методу ін’єктування тріщини, оскільки не виявлено новоутворених тріщин у місцях ін’єктування. Ін’єктуванням тріщин комплексно із методом відновлення стиснутої зони бетону розчином Sika MonoTop – 4012 також досягнуто відновлення несучої здатності пошкодженої залізобетонної балки на 115 %, що на 15 % більше, ніж під час попереднього випробовування непошкодженої балки-близнюка.
dc.description.abstractThe restoration of the load-bearing capacity of RC beams through crack injection is one of the most efficient and practical methods for executing repairs in the field of civil engineering. In the article, following an analysis of crack injection methods in RC structures, an economically viable method for injecting RC beams is proposed. The core approach of the proposed crack injection method involves the process of introducing epoxy resin into the crack, which occurs by gravity flow (without specialized equipment and pressure). The paper outlines a systematic process for preparing the crack in the RC beam for epoxy resin injection. The crack injection method was conducted comprehensively, including the restoration of the compressed concrete zone within the RC beam. The test results demonstrated the effectiveness of the crack injection method, as there were no new crack formations at the injection sites, and the load-bearing capacity of the RC beam was restored to 115 %.
dc.format.extent85-92
dc.format.pages8
dc.identifier.citationKlym A. Injection of cracks in a RC beam with epoxy resin using the gravity flow method / A. Klym, Ya. Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 85–92.
dc.identifier.citationenKlym A. Injection of cracks in a RC beam with epoxy resin using the gravity flow method / A. Klym, Ya. Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 85–92.
dc.identifier.doidoi.org/10.23939/jtbp2023.02.085
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/62177
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (5), 2023
dc.relation.referencesAkram, A.(2021).The Overview of Fracture Mechanics Models for Concrete. Architecture, Civil Engineering, Environment,14(1) 47-57. doi.org/10.21307/acee-2021-005 https://doi.org/10.21307/acee-2021-005
dc.relation.referencesAl-Sulaimani, A. A. A., Al-Sulaimani, H. E., & Al-Sulaimani, A. H. (2022). Repair of reinforced concrete beams with injecting nanocomposites. Journal of Building Engineering, 38, 103560. doi:10.1016/j.jobe.2022.103560
dc.relation.referencesBobalo, T., Blikharskyy, Y., Kopiika, N., & Volynets, M. (2020). Serviceability of RC beams reinforced with high strength rebar's and steel plate. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 25-33). Springer International Publishing. doi:10.1088/1757-899X/708/1/012045 https://doi.org/10.1088/1757-899X/708/1/012045
dc.relation.referencesCarino, N. J., & Clifton, J. R. (1995). Prediction of cracking in reinforced concrete structures. Gaithersburg, MD, USA: US Department of Commerce, National Institute of Standards and Technology. https://doi.org/10.6028/NIST.IR.5634
dc.relation.referencesGolewski GL. The Phenomenon of Cracking in Cement Concretes and Reinforced Concrete Structures: The Mechanism of Cracks Formation, Causes of Their Initiation, Types and Places of Occurrence, and Methods of Detection-A Review. Buildings. 2023; 13(3):765. doi.org/10.3390/buildings13030765 https://doi.org/10.3390/buildings13030765
dc.relation.referencesGupta, A. K., & Akbar, H. (1984). Cracking in reinforced concrete analysis. Journal of Structural Engineering, 110(8), 1735-1746. doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735) https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735)
dc.relation.referencesIssa, C. A., & Debs, P. (2007). Experimental study of epoxy repairing of cracks in concrete. Construction and Building Materials, 21(1), 157-163. doi.org/10.1016/j.conbuildmat.2005.06.030 https://doi.org/10.1016/j.conbuildmat.2005.06.030
dc.relation.referencesKarpiuk, V., Somina, Y., Maistrenko, O. (2020). Engineering method of calculation of beam structures inclined sections based on the fatigue fracture model. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 135-144). Springer International Publishing. doi.org/10.1007/978-3-030-27011-7_17 https://doi.org/10.1007/978-3-030-27011-7_17
dc.relation.referencesKim, J.-W., Lee, J.-H., Lee, S.-H., Kim, M.-H., & Kim, K.-S. (2022). Influence of injection pressure on the effectiveness of epoxy resin injection repair of concrete beams with cracks. Journal of Structural Engineering, 148(5), 04022088. doi:10.1061/(asce)st.1943-541x.0002967 https://doi.org/10.1061/(ASCE)ST.1943-541X.0002967
dc.relation.referencesLi, Y., & Li, X. (2023). Repair methods for cracks in reinforced concrete structures: A review. Construction and Building Materials, 309, 126798. doi:10.1016/j.conbuildmat.2022.126798 https://doi.org/10.1016/j.conbuildmat.2022.126798
dc.relation.referencesLiu, X., & Wang, Y. (2023). Crack formation in reinforced concrete structures: A numerical study. Engineering Structures, 251, 112686. doi:10.1016/j.engstruct.2022.112686 https://doi.org/10.1016/j.engstruct.2021.113565
dc.relation.referencesMa, M. L., Wu, A. C., Chen, J. C., Chen, C. Y., & Wang, A. J. (2019). Repair of shear cracks in reinforced concrete beams using a novel fiber-reinforced polymer injection system. Construction and Building Materials, 218, 1165-1174. doi:10.1016/j.conbuildmat.2019.03.048 https://doi.org/10.1016/j.conbuildmat.2019.03.048
dc.relation.referencesPathak, S. S., & Vesmawala, G. R. (2022). Influence of TiO2 and fly ash on fracture parameters of concrete notched beams. Journal of Advanced Concrete Technology, 20(10), 624-639. doi.org/10.3151/jact.20.624 https://doi.org/10.3151/jact.20.624
dc.relation.referencesSaliah, S. N. M., Nor, N. M., Abd Rahman, N., Abdullah, S., & Tahir, M. S. (2021). Evaluation of severely damaged reinforced concrete beam repaired with epoxy injection using acoustic emission technique. Theoretical and Applied Fracture Mechanics, 112, 102890. doi.org/10.1016/j.tafmec.2020.102890 https://doi.org/10.1016/j.tafmec.2020.102890
dc.relation.referencesSika MonoTop®-4012, https://gbr.sika.com/content/dam/dms/gb01/b/sika-monotop-4012.pdf
dc.relation.referencesSikadur®-30, https://gbr.sika.com/content/dam/dms/gb01/w/sikadur_-30.pdf
dc.relation.referencesSikadur®-52 Injection Normal, https://industry.sika.com/content/dam/dms/gb01/7/sikadur_-52_injectionno...
dc.relation.referencesSylovaniuk, V., Revenko, A., & Lisnychuk, A. (2015). On Short-Term and Long-Term Strength of Restored Building Structure Elements Using Injection Technologies. Bulletin of Ternopil National Technical University, (3), 18-23. doi:10.15830/btu.2015.03.028
dc.relation.referencesVatulia, G., Orel, Y., & Kovalov, M. (2014). Carrying capacity definition of steel-concrete beams with external reinforcement under the fire impact. Applied Mechanics and Materials, 617, 167-170. doi.org/10.4028/www.scientific.net/AMM.617.167 https://doi.org/10.4028/www.scientific.net/AMM.617.167
dc.relation.referencesVerma, S. K., Bhadauria, S. S., & Akhtar, S. (2014). Probabilistic evaluation of service life for reinforced concrete structures. Chinese Journal of Engineering, 2014, 1-8. doi.org/10.1155/2014/648438 https://doi.org/10.1155/2014/648438
dc.relation.referencesXia, Y., & Chen, Z. (2023). Crack formation in reinforced concrete structures: A review. Construction and Building Materials, 310, 127099. doi:10.1016/j.conbuildmat.2022.127099 https://doi.org/10.1016/j.conbuildmat.2022.127099
dc.relation.referencesZhang, J., & Li, Q. (2023). Crack formation in reinforced concrete structures: A case study. Journal of Construction Engineering and Management, 149(3), 04023027. doi:10.1061/(ASCE)CO.1943-7862.0002418 https://doi.org/10.1061/(ASCE)CO.1943-7862.0002418
dc.relation.referencesZhang, W., & Wang, Y. (2023). A new repair method for cracks in reinforced concrete structures. Journal of Construction Engineering and Management, 149(3), 04023028. doi:10.1061/(ASCE)CO.1943-7862.0002419 https://doi.org/10.1061/(ASCE)CO.1943-7862.0002419
dc.relation.referencesenAkram, A.(2021).The Overview of Fracture Mechanics Models for Concrete. Architecture, Civil Engineering, Environment,14(1) 47-57. doi.org/10.21307/acee-2021-005 https://doi.org/10.21307/acee-2021-005
dc.relation.referencesenAl-Sulaimani, A. A. A., Al-Sulaimani, H. E., & Al-Sulaimani, A. H. (2022). Repair of reinforced concrete beams with injecting nanocomposites. Journal of Building Engineering, 38, 103560. doi:10.1016/j.jobe.2022.103560
dc.relation.referencesenBobalo, T., Blikharskyy, Y., Kopiika, N., & Volynets, M. (2020). Serviceability of RC beams reinforced with high strength rebar's and steel plate. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 25-33). Springer International Publishing. doi:10.1088/1757-899X/708/1/012045 https://doi.org/10.1088/1757-899X/708/1/012045
dc.relation.referencesenCarino, N. J., & Clifton, J. R. (1995). Prediction of cracking in reinforced concrete structures. Gaithersburg, MD, USA: US Department of Commerce, National Institute of Standards and Technology. https://doi.org/10.6028/NIST.IR.5634
dc.relation.referencesenGolewski GL. The Phenomenon of Cracking in Cement Concretes and Reinforced Concrete Structures: The Mechanism of Cracks Formation, Causes of Their Initiation, Types and Places of Occurrence, and Methods of Detection-A Review. Buildings. 2023; 13(3):765. doi.org/10.3390/buildings13030765 https://doi.org/10.3390/buildings13030765
dc.relation.referencesenGupta, A. K., & Akbar, H. (1984). Cracking in reinforced concrete analysis. Journal of Structural Engineering, 110(8), 1735-1746. doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735) https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735)
dc.relation.referencesenIssa, C. A., & Debs, P. (2007). Experimental study of epoxy repairing of cracks in concrete. Construction and Building Materials, 21(1), 157-163. doi.org/10.1016/j.conbuildmat.2005.06.030 https://doi.org/10.1016/j.conbuildmat.2005.06.030
dc.relation.referencesenKarpiuk, V., Somina, Y., Maistrenko, O. (2020). Engineering method of calculation of beam structures inclined sections based on the fatigue fracture model. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 135-144). Springer International Publishing. doi.org/10.1007/978-3-030-27011-7_17 https://doi.org/10.1007/978-3-030-27011-7_17
dc.relation.referencesenKim, J.-W., Lee, J.-H., Lee, S.-H., Kim, M.-H., & Kim, K.-S. (2022). Influence of injection pressure on the effectiveness of epoxy resin injection repair of concrete beams with cracks. Journal of Structural Engineering, 148(5), 04022088. doi:10.1061/(asce)st.1943-541x.0002967 https://doi.org/10.1061/(ASCE)ST.1943-541X.0002967
dc.relation.referencesenLi, Y., & Li, X. (2023). Repair methods for cracks in reinforced concrete structures: A review. Construction and Building Materials, 309, 126798. doi:10.1016/j.conbuildmat.2022.126798 https://doi.org/10.1016/j.conbuildmat.2022.126798
dc.relation.referencesenLiu, X., & Wang, Y. (2023). Crack formation in reinforced concrete structures: A numerical study. Engineering Structures, 251, 112686. doi:10.1016/j.engstruct.2022.112686 https://doi.org/10.1016/j.engstruct.2021.113565
dc.relation.referencesenMa, M. L., Wu, A. C., Chen, J. C., Chen, C. Y., & Wang, A. J. (2019). Repair of shear cracks in reinforced concrete beams using a novel fiber-reinforced polymer injection system. Construction and Building Materials, 218, 1165-1174. doi:10.1016/j.conbuildmat.2019.03.048 https://doi.org/10.1016/j.conbuildmat.2019.03.048
dc.relation.referencesenPathak, S. S., & Vesmawala, G. R. (2022). Influence of TiO2 and fly ash on fracture parameters of concrete notched beams. Journal of Advanced Concrete Technology, 20(10), 624-639. doi.org/10.3151/jact.20.624 https://doi.org/10.3151/jact.20.624
dc.relation.referencesenSaliah, S. N. M., Nor, N. M., Abd Rahman, N., Abdullah, S., & Tahir, M. S. (2021). Evaluation of severely damaged reinforced concrete beam repaired with epoxy injection using acoustic emission technique. Theoretical and Applied Fracture Mechanics, 112, 102890. doi.org/10.1016/j.tafmec.2020.102890 https://doi.org/10.1016/j.tafmec.2020.102890
dc.relation.referencesenSika MonoTop®-4012, https://gbr.sika.com/content/dam/dms/gb01/b/sika-monotop-4012.pdf
dc.relation.referencesenSikadur®-30, https://gbr.sika.com/content/dam/dms/gb01/w/sikadur_-30.pdf
dc.relation.referencesenSikadur®-52 Injection Normal, https://industry.sika.com/content/dam/dms/gb01/7/sikadur_-52_injectionno...
dc.relation.referencesenSylovaniuk, V., Revenko, A., & Lisnychuk, A. (2015). On Short-Term and Long-Term Strength of Restored Building Structure Elements Using Injection Technologies. Bulletin of Ternopil National Technical University, (3), 18-23. doi:10.15830/btu.2015.03.028
dc.relation.referencesenVatulia, G., Orel, Y., & Kovalov, M. (2014). Carrying capacity definition of steel-concrete beams with external reinforcement under the fire impact. Applied Mechanics and Materials, 617, 167-170. doi.org/10.4028/www.scientific.net/AMM.617.167 https://doi.org/10.4028/www.scientific.net/AMM.617.167
dc.relation.referencesenVerma, S. K., Bhadauria, S. S., & Akhtar, S. (2014). Probabilistic evaluation of service life for reinforced concrete structures. Chinese Journal of Engineering, 2014, 1-8. doi.org/10.1155/2014/648438 https://doi.org/10.1155/2014/648438
dc.relation.referencesenXia, Y., & Chen, Z. (2023). Crack formation in reinforced concrete structures: A review. Construction and Building Materials, 310, 127099. doi:10.1016/j.conbuildmat.2022.127099 https://doi.org/10.1016/j.conbuildmat.2022.127099
dc.relation.referencesenZhang, J., & Li, Q. (2023). Crack formation in reinforced concrete structures: A case study. Journal of Construction Engineering and Management, 149(3), 04023027. doi:10.1061/(ASCE)CO.1943-7862.0002418 https://doi.org/10.1061/(ASCE)CO.1943-7862.0002418
dc.relation.referencesenZhang, W., & Wang, Y. (2023). A new repair method for cracks in reinforced concrete structures. Journal of Construction Engineering and Management, 149(3), 04023028. doi:10.1061/(ASCE)CO.1943-7862.0002419 https://doi.org/10.1061/(ASCE)CO.1943-7862.0002419
dc.relation.urihttps://doi.org/10.21307/acee-2021-005
dc.relation.urihttps://doi.org/10.1088/1757-899X/708/1/012045
dc.relation.urihttps://doi.org/10.6028/NIST.IR.5634
dc.relation.urihttps://doi.org/10.3390/buildings13030765
dc.relation.urihttps://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1735
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2005.06.030
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_17
dc.relation.urihttps://doi.org/10.1061/(ASCE)ST.1943-541X.0002967
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2022.126798
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2021.113565
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.03.048
dc.relation.urihttps://doi.org/10.3151/jact.20.624
dc.relation.urihttps://doi.org/10.1016/j.tafmec.2020.102890
dc.relation.urihttps://gbr.sika.com/content/dam/dms/gb01/b/sika-monotop-4012.pdf
dc.relation.urihttps://gbr.sika.com/content/dam/dms/gb01/w/sikadur_-30.pdf
dc.relation.urihttps://industry.sika.com/content/dam/dms/gb01/7/sikadur_-52_injectionno..
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMM.617.167
dc.relation.urihttps://doi.org/10.1155/2014/648438
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2022.127099
dc.relation.urihttps://doi.org/10.1061/(ASCE)CO.1943-7862.0002418
dc.relation.urihttps://doi.org/10.1061/(ASCE)CO.1943-7862.0002419
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Klym A., Blikharskyy Ya., 2023
dc.subjectзалізобетонна балка
dc.subjectпошкодження
dc.subjectвідновлення
dc.subjectтріщина
dc.subjectепоксидна смола
dc.subjectін’єктування
dc.subjectRC beam
dc.subjectdamage
dc.subjectrestoration
dc.subjectcrack
dc.subjectepoxy resin
dc.subjectinjection
dc.titleInjection of cracks in a RC beam with epoxy resin using the gravity flow method
dc.title.alternativeІн’єктування тріщини залізобетонної балки епоксидною смолою методом самопливу
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v5n2_Klym_A-Injection_of_cracks_in_a_RC_85-92.pdf
Size:
694.68 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v5n2_Klym_A-Injection_of_cracks_in_a_RC_85-92__COVER.png
Size:
477.81 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: