Ant Colony Algorithm in Traffic Flow Control

dc.citation.epage163
dc.citation.issue2
dc.citation.journalTitleДосягнення у кіберфізичних системах
dc.citation.spage158
dc.citation.volume9
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorDanyliuk, Andrii
dc.contributor.authorMuliarevych, Oleksandr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-06T08:48:07Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe relevance of the research is determined by the need to optimize traffic light control at intersections to reduce congestion and delays and increase the capacity of intersections. A practical solution to this problem is using intelligent transport systems and specific decision-making subsystems. However, automating such tasks requires scientific research to develop effective algorithms suitable for practical use. This work proposes an approach to optimizing traffic light control at intersections that considers the traffic flow parameters at a specific intersection and those at adjacent intersections, utilizing an ant colony optimization algorithm to optimize traffic light control at neighboring intersections. The results obtained show that this approach is more effective compared to existing methods and has the potential to reduce delays by 10 % and increase intersection capacity by 15 % and more.
dc.format.extent158-163
dc.format.pages6
dc.identifier.citationDanyliuk A. Ant Colony Algorithm in Traffic Flow Control / Andrii Danyliuk, Oleksandr Muliarevych // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 158–163.
dc.identifier.citationenDanyliuk A. Ant Colony Algorithm in Traffic Flow Control / Andrii Danyliuk, Oleksandr Muliarevych // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 158–163.
dc.identifier.doidoi.org/10.23939/acps2024.02.158
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117375
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofДосягнення у кіберфізичних системах, 2 (9), 2024
dc.relation.ispartofAdvances in Cyber-Physical Systems, 2 (9), 2024
dc.relation.references[1] Wu, J.; Cheng, L.; Chu, S.; Song, Y. (2024). An autonomous coverage path planning algorithm for maritime search and rescue of persons-in-water based on deep reinforcement learning. Ocean. Eng, 291, 116403. DOI: https://doi.org/10.1016/j.oceaneng.2023.116403
dc.relation.references[2] Ma, Yue, Bo Li, Wentao Huang, and Qinqin Fan (2023). An Improved NSGA-II Based on Multi-Task Optimization for Multi-UAV Maritime Search and Rescue under Severe Weather. Journal of Marine Science and Engineering, 11, no. 4: 781. DOI: https://doi.org/10.3390/jmse11040781
dc.relation.references[3] Cho, S.W.; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S. (2021) Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations. Comput. Ind. Eng., 161. DOI: https://doi.org/10.1016/j.cie.2021.107612
dc.relation.references[4] Skinderowicz, R. (2022). Improving Ant Colony Optimization efficiency for solving large TSP instances. Appl. Soft Comput., 120. DOI: https://doi.org/10.1016/j.asoc.2022.108653
dc.relation.references[5] Wang Y., Jiang Y., Wu Y., Yao Z. (2024). Mitigating traffic oscillation through control of connected automated vehicles: A cellular automata simulation. Expert Systems with Applications, no. 235. DOI: https://doi.org/10.1016/j.eswa.2023.121275
dc.relation.references[6] Liu, Yuxin, Zihang Qin, and Jin Liu (2023). “An Improved Genetic Algorithm for the Granularity-Based Split Vehicle Routing Problem with Simultaneous Delivery and Pickup”. Mathematics, 11, no. 15: 3328. https://doi.org/10.3390/math11153328
dc.relation.references[7] Sarbijan, M. S.; Behnamian, J. (2023). A mathematical model and metaheuristic approach to solve the real-time feeder vehicle routing problem. Comput. Ind. Eng. DOI: https://doi.org/10.1016/j.cie.2023.109684
dc.relation.references[8] Wu, Y.; Cai, Y.; Fang, C. Evolutionary Multitasking for Bidirectional Adaptive Codec: A Case Study on Vehicle Routing Problem with Time Windows. Appl. Soft. Comput. 2023, 145. DOI: https://doi.org/10.1016/j.asoc.2023.110605
dc.relation.references[9] Abu-Alsaad, H. A. (2023). Cnn-Based Smart Parking System. International Journal of Interactive Mobile Technologies (iJIM), 17, 155–170. DOI: https://doi.org/10.3991/ijim.v17i11.37033
dc.relation.references[10] P.-S. Shih, S. Liu and X.-H. Yu, “Ant Colony Optimization for Multi-phase Traffic Signal Control”, 2022 IEEE 7th International Conference on Intelligent Transportation Engineering (ICITE). Beijing, China, 2022, pp. 517–521, DOI: 10.1109/ICITE56321.2022.10101431.
dc.relation.references[11] Yao Z., Li L., Liao W., Wang Y. (2024). Optimal lane management policy for connected automated vehicles in mixed traffic flow. Physica A: Statistical Mechanics and its Applications, no. 637. DOI: https://doi.org/10.1016/j.physa.2024.129520
dc.relation.references[12] Liu K., Feng T. (2023). Heterogeneous traffic flow cellular automata model mixed with intelligent controlled vehicles. Physica A: Statistical Mechanics and its Applications, no. 632. DOI: https://doi.org/10.1016/j.physa.2023.129316
dc.relation.references[13] Yulianto, B. (2023). Adaptive Traffic Signal Control Using Fuzzy Logic Under Mixed Traffic Conditions. In: Kristiawan, S. A., Gan, B. S., Shahin, M., Sharma, A. (eds). Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering. ICRMCE 2021. Lecture Notes in Civil Engineering, vol. 225. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-16-9348-9_59
dc.relation.references[14] Wang F., Tang K., Li K., Liu Z., Zhu L. (2019). A Group-Based Signal Timing Optimization Model Considering Safety for Signalized Intersections with Mixed Traffic Flows. Journal of Advanced Transportation, vol. 2019. DOI: https://doi.org/10.1155/2019/2747569
dc.relation.references[15] Nguyen, Tri-Hai & Jung, Jason. (2021). Ant colony optimization-based traffic routing with intersection negotiation for connected vehicles. Applied Soft Computing, 112. 107828. 10.1016/j.asoc.2021.107828.
dc.relation.references[16] Alkhatib A.A.A., Maria A. K., AlZu`bi S. (2022). Smart Traffic Scheduling for Crowded Cities Road Networks. Egyptian Informatics Journal, vol. 23(4), pp. 163–176. DOI: https://doi.org/10.1016/j.eij.2022.10.002
dc.relation.references[17] Bo Liu, Zhentao Ding (2022). A distributed deep reinforcement learning method for traffic light control. Neurocomputing, no. 490, pp. 390–399 DOI: https://doi.org/10.1016/j.neucom.2021.11.106
dc.relation.references[18] Hai D. T., Manh D. V., Nhat N. M. (2022). Genetic algo-rithm application for optimizing traffic signal timing reflecting vehicle emission intensity. Transport Problems, no. 17(1), pp. 5–16. DOI: https://doi.org/10.20858/tp.2022.17.1.01
dc.relation.references[19] Abdou A. A., Farrag H. M., and A. S. Tolba (2022). A Fuzzy Logic-Based Smart Traffic Management Systems. Journal of Computer Science, no. 18(11), pp. 1085–1099 DOI: https://doi.org/10.3844/jcssp.2022.1085.1099
dc.relation.references[20] Buzachis A., Celesti A., Galleta A., Fazio M., Fortino G., Villari M. (2020). A multi-agent autonomous intersection management (MA-AIM) system for smart cities leveraging edge-of-things and Blockchain. Information Sciences, no. 522, pp. 148–163. DOI: https://doi.org/10.1016/j.ins.2020.02.059
dc.relation.referencesen[1] Wu, J.; Cheng, L.; Chu, S.; Song, Y. (2024). An autonomous coverage path planning algorithm for maritime search and rescue of persons-in-water based on deep reinforcement learning. Ocean. Eng, 291, 116403. DOI: https://doi.org/10.1016/j.oceaneng.2023.116403
dc.relation.referencesen[2] Ma, Yue, Bo Li, Wentao Huang, and Qinqin Fan (2023). An Improved NSGA-II Based on Multi-Task Optimization for Multi-UAV Maritime Search and Rescue under Severe Weather. Journal of Marine Science and Engineering, 11, no. 4: 781. DOI: https://doi.org/10.3390/jmse11040781
dc.relation.referencesen[3] Cho, S.W.; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S. (2021) Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations. Comput. Ind. Eng., 161. DOI: https://doi.org/10.1016/j.cie.2021.107612
dc.relation.referencesen[4] Skinderowicz, R. (2022). Improving Ant Colony Optimization efficiency for solving large TSP instances. Appl. Soft Comput., 120. DOI: https://doi.org/10.1016/j.asoc.2022.108653
dc.relation.referencesen[5] Wang Y., Jiang Y., Wu Y., Yao Z. (2024). Mitigating traffic oscillation through control of connected automated vehicles: A cellular automata simulation. Expert Systems with Applications, no. 235. DOI: https://doi.org/10.1016/j.eswa.2023.121275
dc.relation.referencesen[6] Liu, Yuxin, Zihang Qin, and Jin Liu (2023). "An Improved Genetic Algorithm for the Granularity-Based Split Vehicle Routing Problem with Simultaneous Delivery and Pickup". Mathematics, 11, no. 15: 3328. https://doi.org/10.3390/math11153328
dc.relation.referencesen[7] Sarbijan, M. S.; Behnamian, J. (2023). A mathematical model and metaheuristic approach to solve the real-time feeder vehicle routing problem. Comput. Ind. Eng. DOI: https://doi.org/10.1016/j.cie.2023.109684
dc.relation.referencesen[8] Wu, Y.; Cai, Y.; Fang, C. Evolutionary Multitasking for Bidirectional Adaptive Codec: A Case Study on Vehicle Routing Problem with Time Windows. Appl. Soft. Comput. 2023, 145. DOI: https://doi.org/10.1016/j.asoc.2023.110605
dc.relation.referencesen[9] Abu-Alsaad, H. A. (2023). Cnn-Based Smart Parking System. International Journal of Interactive Mobile Technologies (iJIM), 17, 155–170. DOI: https://doi.org/10.3991/ijim.v17i11.37033
dc.relation.referencesen[10] P.-S. Shih, S. Liu and X.-H. Yu, "Ant Colony Optimization for Multi-phase Traffic Signal Control", 2022 IEEE 7th International Conference on Intelligent Transportation Engineering (ICITE). Beijing, China, 2022, pp. 517–521, DOI: 10.1109/ICITE56321.2022.10101431.
dc.relation.referencesen[11] Yao Z., Li L., Liao W., Wang Y. (2024). Optimal lane management policy for connected automated vehicles in mixed traffic flow. Physica A: Statistical Mechanics and its Applications, no. 637. DOI: https://doi.org/10.1016/j.physa.2024.129520
dc.relation.referencesen[12] Liu K., Feng T. (2023). Heterogeneous traffic flow cellular automata model mixed with intelligent controlled vehicles. Physica A: Statistical Mechanics and its Applications, no. 632. DOI: https://doi.org/10.1016/j.physa.2023.129316
dc.relation.referencesen[13] Yulianto, B. (2023). Adaptive Traffic Signal Control Using Fuzzy Logic Under Mixed Traffic Conditions. In: Kristiawan, S. A., Gan, B. S., Shahin, M., Sharma, A. (eds). Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering. ICRMCE 2021. Lecture Notes in Civil Engineering, vol. 225. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-16-9348-9_59
dc.relation.referencesen[14] Wang F., Tang K., Li K., Liu Z., Zhu L. (2019). A Group-Based Signal Timing Optimization Model Considering Safety for Signalized Intersections with Mixed Traffic Flows. Journal of Advanced Transportation, vol. 2019. DOI: https://doi.org/10.1155/2019/2747569
dc.relation.referencesen[15] Nguyen, Tri-Hai & Jung, Jason. (2021). Ant colony optimization-based traffic routing with intersection negotiation for connected vehicles. Applied Soft Computing, 112. 107828. 10.1016/j.asoc.2021.107828.
dc.relation.referencesen[16] Alkhatib A.A.A., Maria A. K., AlZu`bi S. (2022). Smart Traffic Scheduling for Crowded Cities Road Networks. Egyptian Informatics Journal, vol. 23(4), pp. 163–176. DOI: https://doi.org/10.1016/j.eij.2022.10.002
dc.relation.referencesen[17] Bo Liu, Zhentao Ding (2022). A distributed deep reinforcement learning method for traffic light control. Neurocomputing, no. 490, pp. 390–399 DOI: https://doi.org/10.1016/j.neucom.2021.11.106
dc.relation.referencesen[18] Hai D. T., Manh D. V., Nhat N. M. (2022). Genetic algo-rithm application for optimizing traffic signal timing reflecting vehicle emission intensity. Transport Problems, no. 17(1), pp. 5–16. DOI: https://doi.org/10.20858/tp.2022.17.1.01
dc.relation.referencesen[19] Abdou A. A., Farrag H. M., and A. S. Tolba (2022). A Fuzzy Logic-Based Smart Traffic Management Systems. Journal of Computer Science, no. 18(11), pp. 1085–1099 DOI: https://doi.org/10.3844/jcssp.2022.1085.1099
dc.relation.referencesen[20] Buzachis A., Celesti A., Galleta A., Fazio M., Fortino G., Villari M. (2020). A multi-agent autonomous intersection management (MA-AIM) system for smart cities leveraging edge-of-things and Blockchain. Information Sciences, no. 522, pp. 148–163. DOI: https://doi.org/10.1016/j.ins.2020.02.059
dc.relation.urihttps://doi.org/10.1016/j.oceaneng.2023.116403
dc.relation.urihttps://doi.org/10.3390/jmse11040781
dc.relation.urihttps://doi.org/10.1016/j.cie.2021.107612
dc.relation.urihttps://doi.org/10.1016/j.asoc.2022.108653
dc.relation.urihttps://doi.org/10.1016/j.eswa.2023.121275
dc.relation.urihttps://doi.org/10.3390/math11153328
dc.relation.urihttps://doi.org/10.1016/j.cie.2023.109684
dc.relation.urihttps://doi.org/10.1016/j.asoc.2023.110605
dc.relation.urihttps://doi.org/10.3991/ijim.v17i11.37033
dc.relation.urihttps://doi.org/10.1016/j.physa.2024.129520
dc.relation.urihttps://doi.org/10.1016/j.physa.2023.129316
dc.relation.urihttps://doi.org/10.1007/978-981-16-9348-9_59
dc.relation.urihttps://doi.org/10.1155/2019/2747569
dc.relation.urihttps://doi.org/10.1016/j.eij.2022.10.002
dc.relation.urihttps://doi.org/10.1016/j.neucom.2021.11.106
dc.relation.urihttps://doi.org/10.20858/tp.2022.17.1.01
dc.relation.urihttps://doi.org/10.3844/jcssp.2022.1085.1099
dc.relation.urihttps://doi.org/10.1016/j.ins.2020.02.059
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Danyliuk A., Muliarevych O., 2024
dc.subjectTraffic
dc.subjectcongestion
dc.subjectintersection
dc.subjecttraffic light controller
dc.subjectadaptive traffic control
dc.subjectcyber-physical system
dc.titleAnt Colony Algorithm in Traffic Flow Control
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n2_Danyliuk_A-Ant_Colony_Algorithm_in_158-163.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n2_Danyliuk_A-Ant_Colony_Algorithm_in_158-163__COVER.png
Size:
1.43 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: