Encryption method based on codes
dc.citation.epage | 31 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Досягнення у кібер-фізичних системах | |
dc.citation.spage | 24 | |
dc.contributor.affiliation | West Ukrainian National University | |
dc.contributor.affiliation | University of the National Education Commission | |
dc.contributor.author | Davletova, Alina | |
dc.contributor.author | Yatskiv, Vasyl | |
dc.contributor.author | Ivasiev, Stepan | |
dc.contributor.author | Karpinskyi, Mykola | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-17T10:08:01Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | This paper proposes an improvement of the McEliece asymmetric cryptosystem based on code-based cryptography by replacing the permutation matrix with a modulo operation and using a finite field GF(q). This approach increases the complexity of the decryption process for potential attackers, providing a high level of cryptographic security without changing the length of the key. The article provides a diagram of the improved operation of the cryptosystem and describes examples of application. An analysis of the number of possible combinations of matrices has been carried out for different implementation options of code (7,4) based on different numerical systems. It has been shown that achieving cryptographic security comparable to the original McEliece cryptosystem requires the use of q≥5. | |
dc.format.extent | 24-31 | |
dc.format.pages | 8 | |
dc.identifier.citation | Encryption method based on codes / Davletova Alina, Yatskiv Vasyl, Ivasiev Stepan, Karpinskyi Mykola // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 24–31. | |
dc.identifier.citationen | Encryption method based on codes / Davletova Alina, Yatskiv Vasyl, Ivasiev Stepan, Karpinskyi Mykola // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 24–31. | |
dc.identifier.doi | doi.org/10.23939/acps2024.01.024 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64188 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Досягнення у кібер-фізичних системах, 1 (9), 2024 | |
dc.relation.ispartof | Advances in Cyber-Physical Systems, 1 (9), 2024 | |
dc.relation.references | [1] Dam, D. T., Tran, T. H., Hoang, V. P., Pham, C. K., & Hoang, T. T. (2023). A survey of post-quantum cryptography: Start of a new race. Cryptography, 7(3), 40. DOI: 10.3390/cryptography 7030040 | |
dc.relation.references | [2]Kichna, A., & Farchane, A. (2023, May). Secure and efficient code-based cryptography for multi-party computation and digital signatures. In Computer Sciences & Mathematics Forum (Vol. 6, No. 1, p. 1). MDPI. DOI: 10.3390/cmsf2023006001 | |
dc.relation.references | [3]Esser, A., May, A., & Zweydinger, F. (2022, May). McEliece needs a break–solving McEliece-1284 and quasi-cyclic-2918 with modern ISD. In Annual International Conference on the Theory and Applications of Cryptographic Techniques (pp. 433–457). Cham: Springer International Publishing. DOI: 10.1007/978-3-031-07082-2_16 | |
dc.relation.references | [4]Yevseiev, S., Korol, O., Pohasii, S., & Khvostenko, V. (2021, September). Evaluation of cryptographic strength and energy intensity of design of modified crypto-code structure of McEliece with modified Elliptic codes. III International Scientific and Practical Conference “Information Security And Information Technologies”, Odesa, Ukraine, September 13–19, 2021, Vol. 3200, 144–157. ISSN 1613-0073. https://ceurws.org/Vol-3200/paper20.pdf. | |
dc.relation.references | [5]Parashar, A., & Jadiya, D. Enhanced McEliece Algorithm for post-quantum cryptosystems. DOI: 10.13140/RG.2.2.22002.93125. | |
dc.relation.references | [6]Bindal, E., & Singh, A. K. (2024). Secure and compact: A new variant of McEliece Cryptosystem. IEEE Access. DOI: 10.1109/ACCESS.2024.3373314. | |
dc.relation.references | [7]Yevseiev, S., Korol, O., & GavrilovA, A. (2019). Development of authentication codes of messages on the basis of UMAC with crypto-code McEliece’s scheme. International Journal of 3D printing technologies and digital industry, 3(2), 153–170. | |
dc.relation.references | [8] McEliece, R. J. (1978). A public-key cryptosystem based on algebraic. Coding Thv, 4244, 114–116. | |
dc.relation.references | [9] Isakov, D. A., & Sokolov, A. V. (2022). McEliece cryptosystem based on quaternary hamming codes. Informatics & Mathematical Methods in Simulation, 12(4). 280–287. DOI: 10.15276/imms.v12.no4.280 | |
dc.relation.references | [10] Freudenberger, J., & Thiers, J. P. (2021). A new class of qary codes for the McEliece cryptosystem. Cryptography, 5(1), 11. DOI: 10.3390/cryptography5010011. | |
dc.relation.references | [11] Ukwuoma H., Gabriel A., Thompson A., Boniface A. (2022) Post-quantum cryptography-driven security framework for cloud computing. Open Computer Science, 12(1), 142–153. DOI: 10.1515/comp-2022-0235. | |
dc.relation.references | [12] Kabeya T. (2019). McEliece’s Crypto System based on the Hamming Cyclic Codes. International Journal of Innovative Science and Research Technology, 4(7). 293–296. | |
dc.relation.referencesen | [1] Dam, D. T., Tran, T. H., Hoang, V. P., Pham, C. K., & Hoang, T. T. (2023). A survey of post-quantum cryptography: Start of a new race. Cryptography, 7(3), 40. DOI: 10.3390/cryptography 7030040 | |
dc.relation.referencesen | [2]Kichna, A., & Farchane, A. (2023, May). Secure and efficient code-based cryptography for multi-party computation and digital signatures. In Computer Sciences & Mathematics Forum (Vol. 6, No. 1, p. 1). MDPI. DOI: 10.3390/cmsf2023006001 | |
dc.relation.referencesen | [3]Esser, A., May, A., & Zweydinger, F. (2022, May). McEliece needs a break–solving McEliece-1284 and quasi-cyclic-2918 with modern ISD. In Annual International Conference on the Theory and Applications of Cryptographic Techniques (pp. 433–457). Cham: Springer International Publishing. DOI: 10.1007/978-3-031-07082-2_16 | |
dc.relation.referencesen | [4]Yevseiev, S., Korol, O., Pohasii, S., & Khvostenko, V. (2021, September). Evaluation of cryptographic strength and energy intensity of design of modified crypto-code structure of McEliece with modified Elliptic codes. III International Scientific and Practical Conference "Information Security And Information Technologies", Odesa, Ukraine, September 13–19, 2021, Vol. 3200, 144–157. ISSN 1613-0073. https://ceurws.org/Vol-3200/paper20.pdf. | |
dc.relation.referencesen | [5]Parashar, A., & Jadiya, D. Enhanced McEliece Algorithm for post-quantum cryptosystems. DOI: 10.13140/RG.2.2.22002.93125. | |
dc.relation.referencesen | [6]Bindal, E., & Singh, A. K. (2024). Secure and compact: A new variant of McEliece Cryptosystem. IEEE Access. DOI: 10.1109/ACCESS.2024.3373314. | |
dc.relation.referencesen | [7]Yevseiev, S., Korol, O., & GavrilovA, A. (2019). Development of authentication codes of messages on the basis of UMAC with crypto-code McEliece’s scheme. International Journal of 3D printing technologies and digital industry, 3(2), 153–170. | |
dc.relation.referencesen | [8] McEliece, R. J. (1978). A public-key cryptosystem based on algebraic. Coding Thv, 4244, 114–116. | |
dc.relation.referencesen | [9] Isakov, D. A., & Sokolov, A. V. (2022). McEliece cryptosystem based on quaternary hamming codes. Informatics & Mathematical Methods in Simulation, 12(4). 280–287. DOI: 10.15276/imms.v12.no4.280 | |
dc.relation.referencesen | [10] Freudenberger, J., & Thiers, J. P. (2021). A new class of qary codes for the McEliece cryptosystem. Cryptography, 5(1), 11. DOI: 10.3390/cryptography5010011. | |
dc.relation.referencesen | [11] Ukwuoma H., Gabriel A., Thompson A., Boniface A. (2022) Post-quantum cryptography-driven security framework for cloud computing. Open Computer Science, 12(1), 142–153. DOI: 10.1515/comp-2022-0235. | |
dc.relation.referencesen | [12] Kabeya T. (2019). McEliece’s Crypto System based on the Hamming Cyclic Codes. International Journal of Innovative Science and Research Technology, 4(7). 293–296. | |
dc.relation.uri | https://ceurws.org/Vol-3200/paper20.pdf | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Davletova A., Yatskiv V., Ivasiev S., Karpinskyі M., 2024 | |
dc.subject | Asymmetric cryptosystem | |
dc.subject | Code-based cryptography | |
dc.subject | Computational complexity | |
dc.subject | Data encryption | |
dc.subject | Finite field | |
dc.title | Encryption method based on codes | |
dc.type | Article |
Files
License bundle
1 - 1 of 1