Фізико-хімічні взаємодії в пластифікованих крохмальних матеріалах
dc.citation.epage | 130 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
dc.citation.spage | 124 | |
dc.citation.volume | 6 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Масюк, А. С. | |
dc.contributor.author | Кечур, Д. І. | |
dc.contributor.author | Кисіль, Д. Б. | |
dc.contributor.author | Куліш, Б. І. | |
dc.contributor.author | Левицький, В. Є. | |
dc.contributor.author | Masyuk, A. S. | |
dc.contributor.author | Kechur, D. I. | |
dc.contributor.author | Kysil, D. B. | |
dc.contributor.author | Kulish, B. I. | |
dc.contributor.author | Levytskyi, V. Ye. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T09:24:43Z | |
dc.date.available | 2024-02-09T09:24:43Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Досліджено фізико-хімічні закономірності взаємодій в системі крохмаль-гліцерин-епоксидована соєва олива. На підставі реологічних кривих виявлено вплив пластифікаторів на в’язкість систем гліцерин-крохмаль, залежно від швидкості зсуву, часу витримки при температурі та природи крохмалю. Виявлено вплив епоксидованої соєвої оливи на в’язкість систем гліцерин-вологонасичений крохмаль. На підставі ІЧ спектроскопічних досліджень та значень показника заломлення підтвержено наявність взаємодій між компонентами системи. За допомогою крайового кута змочування, визначено вплив природи пластифікатора на здатність змочувати поверхню пластифікованого крохмалю. | |
dc.description.abstract | The physicochemical patterns of interactions in the starch-glycerol-epoxidized soybean oil system were studied. On the basis of rheological curves, the effect of plasticizers on the viscosity of glycerin – starch systems was revealed, depending on the shear rate, time of exposure at temperature, and the nature of starch. The effect of epoxidized soybean oil on the viscosity of glycerin – moist starch systems was revealed. On the basis of IR spectroscopic studies and refractive index values, the existence of interactions between the system components was confirmed. The influence of the nature of the plasticizer on the ability to wet the surface of the plasticized starch was determined using the marginal wetting angle. | |
dc.format.extent | 124-130 | |
dc.format.pages | 7 | |
dc.identifier.citation | Фізико-хімічні взаємодії в пластифікованих крохмальних матеріалах / А. С. Масюк, Д. І. Кечур, Д. Б. Кисіль, Б. І. Куліш, В. Є. Левицький // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2023. — Том 6. — № 1. — С. 124–130. | |
dc.identifier.citationen | Physico-chemical interactions in plasticized starch materials / A. S. Masyuk, D. I. Kechur, D. B. Kysil, B. I. Kulish, V. Ye. Levytskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 124–130. | |
dc.identifier.doi | /doi.org/10.23939/ctas2023.01.124 | |
dc.identifier.issn | 2617-7307 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61181 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 1 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (6), 2023 | |
dc.relation.references | 1. Lee, Tin Sin, Bee, Soo Tueen. (2019). Polylactic Acid 2nd Edition. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. Oxford: William Andrew, 422. | |
dc.relation.references | 2. Maria, Laura, Di, Lorenzo, René, Androsch. (2018). Industrial Applications of Poly(lactic acid). Cham: Springer, 228. https://doi.org/10.1007/978-3-319-75459-8. | |
dc.relation.references | 3. Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R.A., El-Khatib, S. (2022). Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials, 15, 4312. https://doi.org/10.3390/ma15124312. | |
dc.relation.references | 4. Casalini, T., Rossi, F., Castrovinci, A., Perale, G. (2019). A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol,7, 259. doi: 10.3389/fbioe.2019.00259. | |
dc.relation.references | 5. Kotiba, Hamada, Mosab, Kaseemb, Muhammad, Ayyoobd, Jinho, Jooa, Fawaz, Deric. (2018). Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001. | |
dc.relation.references | 6. Jayarathna, S., Andersson, M., Andersson, R. (2022). Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14, 4557. https://doi.org/10.3390/polym14214557. | |
dc.relation.references | 7. Yu., M., Zheng, Y., Tian, J. (2020). Study on the biodegradability of modified starch/polylactic acid (PLA) composite materials. RSC Adv., 10, 26298. DOI: 10.1039/D0RA00274G. | |
dc.relation.references | 8. Farahnaky, A., Saberi, B., Majzoobi, M. (2013). Glycerol on Properties of Wheat Starch Films. J Texture Stud, 44, 176–186. https://doi.org/10.1111/jtxs.12007. | |
dc.relation.references | 9. Zhu, Xiong, Yong, Yang, Jianxiang, Feng, Xiaomin, Zhang, Chuanzhi, Zhang, Zhaobin, Tang, Jin, Zhu. (2013). Preparation and characterization of poly(lactic acid)/ starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92, 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007. | |
dc.relation.references | 10. Muller, J., González-Martínez, C., Chiralt A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials (Basel), 10(8), 952. doi: 10.3390/ma10080952. | |
dc.relation.references | 11. Guo J., Wang J., He Y., Sun H., Chen, X., Zheng, Q., Xie, H. (2020). Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil. Polymers (Basel), 12, 632–639. | |
dc.relation.references | 12. Kulish, B. I., Kechur, D. I., Masyuk, A. S., Levytskyi, V. E. (2022). Peculiarities of the effect of epoxidized soybean oil on the properties of polylactide materials. Chemistry, technology of substances and their application, 5 (2), 202–207. | |
dc.relation.references | 13. Masyuk, A., Kechur, D., Levytskyi, V., Kulish, B. (2022). Starch-containing polylactide nanocomposites. Nanomaterials: applications & properties: proceedings of the 2022 IEEE 12th International conference. Krakow, 11–16 September 2022, NEE15-1–NEE15-4. | |
dc.relation.references | 14. Masyuk, A. S., Levytskyi, V. E., Kechur, D. I., Kulish, B. I., Katruk, D. S. (2022). Influence of calcium carbonate on the operational properties of polylactide composites. Chemistry, Technology and Application of Substances substances and their application, 5 (1), 180–185. | |
dc.relation.referencesen | 1. Lee, Tin Sin, Bee, Soo Tueen. (2019). Polylactic Acid 2nd Edition. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. Oxford: William Andrew, 422. | |
dc.relation.referencesen | 2. Maria, Laura, Di, Lorenzo, René, Androsch. (2018). Industrial Applications of Poly(lactic acid). Cham: Springer, 228. https://doi.org/10.1007/978-3-319-75459-8. | |
dc.relation.referencesen | 3. Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R.A., El-Khatib, S. (2022). Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials, 15, 4312. https://doi.org/10.3390/ma15124312. | |
dc.relation.referencesen | 4. Casalini, T., Rossi, F., Castrovinci, A., Perale, G. (2019). A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol,7, 259. doi: 10.3389/fbioe.2019.00259. | |
dc.relation.referencesen | 5. Kotiba, Hamada, Mosab, Kaseemb, Muhammad, Ayyoobd, Jinho, Jooa, Fawaz, Deric. (2018). Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001. | |
dc.relation.referencesen | 6. Jayarathna, S., Andersson, M., Andersson, R. (2022). Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14, 4557. https://doi.org/10.3390/polym14214557. | |
dc.relation.referencesen | 7. Yu., M., Zheng, Y., Tian, J. (2020). Study on the biodegradability of modified starch/polylactic acid (PLA) composite materials. RSC Adv., 10, 26298. DOI: 10.1039/D0RA00274G. | |
dc.relation.referencesen | 8. Farahnaky, A., Saberi, B., Majzoobi, M. (2013). Glycerol on Properties of Wheat Starch Films. J Texture Stud, 44, 176–186. https://doi.org/10.1111/jtxs.12007. | |
dc.relation.referencesen | 9. Zhu, Xiong, Yong, Yang, Jianxiang, Feng, Xiaomin, Zhang, Chuanzhi, Zhang, Zhaobin, Tang, Jin, Zhu. (2013). Preparation and characterization of poly(lactic acid)/ starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92, 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007. | |
dc.relation.referencesen | 10. Muller, J., González-Martínez, C., Chiralt A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials (Basel), 10(8), 952. doi: 10.3390/ma10080952. | |
dc.relation.referencesen | 11. Guo J., Wang J., He Y., Sun H., Chen, X., Zheng, Q., Xie, H. (2020). Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil. Polymers (Basel), 12, 632–639. | |
dc.relation.referencesen | 12. Kulish, B. I., Kechur, D. I., Masyuk, A. S., Levytskyi, V. E. (2022). Peculiarities of the effect of epoxidized soybean oil on the properties of polylactide materials. Chemistry, technology of substances and their application, 5 (2), 202–207. | |
dc.relation.referencesen | 13. Masyuk, A., Kechur, D., Levytskyi, V., Kulish, B. (2022). Starch-containing polylactide nanocomposites. Nanomaterials: applications & properties: proceedings of the 2022 IEEE 12th International conference. Krakow, 11–16 September 2022, NEE15-1–NEE15-4. | |
dc.relation.referencesen | 14. Masyuk, A. S., Levytskyi, V. E., Kechur, D. I., Kulish, B. I., Katruk, D. S. (2022). Influence of calcium carbonate on the operational properties of polylactide composites. Chemistry, Technology and Application of Substances substances and their application, 5 (1), 180–185. | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-75459-8 | |
dc.relation.uri | https://doi.org/10.3390/ma15124312 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2018.07.001 | |
dc.relation.uri | https://doi.org/10.3390/polym14214557 | |
dc.relation.uri | https://doi.org/10.1111/jtxs.12007 | |
dc.relation.uri | https://doi.org/10.1016/j.carbpol.2012.09.007 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | крохмаль | |
dc.subject | гліцерин | |
dc.subject | епоксидована соєва олива | |
dc.subject | пластифікування | |
dc.subject | кут змочування | |
dc.subject | starch | |
dc.subject | glycerin | |
dc.subject | epoxidized soybean oil | |
dc.subject | plasticization | |
dc.subject | wetting angle | |
dc.title | Фізико-хімічні взаємодії в пластифікованих крохмальних матеріалах | |
dc.title.alternative | Physico-chemical interactions in plasticized starch materials | |
dc.type | Article |
Files
License bundle
1 - 1 of 1