Фізико-хімічні взаємодії в пластифікованих крохмальних матеріалах

dc.citation.epage130
dc.citation.issue1
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage124
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМасюк, А. С.
dc.contributor.authorКечур, Д. І.
dc.contributor.authorКисіль, Д. Б.
dc.contributor.authorКуліш, Б. І.
dc.contributor.authorЛевицький, В. Є.
dc.contributor.authorMasyuk, A. S.
dc.contributor.authorKechur, D. I.
dc.contributor.authorKysil, D. B.
dc.contributor.authorKulish, B. I.
dc.contributor.authorLevytskyi, V. Ye.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T09:24:43Z
dc.date.available2024-02-09T09:24:43Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДосліджено фізико-хімічні закономірності взаємодій в системі крохмаль-гліцерин-епоксидована соєва олива. На підставі реологічних кривих виявлено вплив пластифікаторів на в’язкість систем гліцерин-крохмаль, залежно від швидкості зсуву, часу витримки при температурі та природи крохмалю. Виявлено вплив епоксидованої соєвої оливи на в’язкість систем гліцерин-вологонасичений крохмаль. На підставі ІЧ спектроскопічних досліджень та значень показника заломлення підтвержено наявність взаємодій між компонентами системи. За допомогою крайового кута змочування, визначено вплив природи пластифікатора на здатність змочувати поверхню пластифікованого крохмалю.
dc.description.abstractThe physicochemical patterns of interactions in the starch-glycerol-epoxidized soybean oil system were studied. On the basis of rheological curves, the effect of plasticizers on the viscosity of glycerin – starch systems was revealed, depending on the shear rate, time of exposure at temperature, and the nature of starch. The effect of epoxidized soybean oil on the viscosity of glycerin – moist starch systems was revealed. On the basis of IR spectroscopic studies and refractive index values, the existence of interactions between the system components was confirmed. The influence of the nature of the plasticizer on the ability to wet the surface of the plasticized starch was determined using the marginal wetting angle.
dc.format.extent124-130
dc.format.pages7
dc.identifier.citationФізико-хімічні взаємодії в пластифікованих крохмальних матеріалах / А. С. Масюк, Д. І. Кечур, Д. Б. Кисіль, Б. І. Куліш, В. Є. Левицький // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2023. — Том 6. — № 1. — С. 124–130.
dc.identifier.citationenPhysico-chemical interactions in plasticized starch materials / A. S. Masyuk, D. I. Kechur, D. B. Kysil, B. I. Kulish, V. Ye. Levytskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 124–130.
dc.identifier.doi/doi.org/10.23939/ctas2023.01.124
dc.identifier.issn2617-7307
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61181
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 1 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (6), 2023
dc.relation.references1. Lee, Tin Sin, Bee, Soo Tueen. (2019). Polylactic Acid 2nd Edition. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. Oxford: William Andrew, 422.
dc.relation.references2. Maria, Laura, Di, Lorenzo, René, Androsch. (2018). Industrial Applications of Poly(lactic acid). Cham: Springer, 228. https://doi.org/10.1007/978-3-319-75459-8.
dc.relation.references3. Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R.A., El-Khatib, S. (2022). Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials, 15, 4312. https://doi.org/10.3390/ma15124312.
dc.relation.references4. Casalini, T., Rossi, F., Castrovinci, A., Perale, G. (2019). A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol,7, 259. doi: 10.3389/fbioe.2019.00259.
dc.relation.references5. Kotiba, Hamada, Mosab, Kaseemb, Muhammad, Ayyoobd, Jinho, Jooa, Fawaz, Deric. (2018). Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001.
dc.relation.references6. Jayarathna, S., Andersson, M., Andersson, R. (2022). Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14, 4557. https://doi.org/10.3390/polym14214557.
dc.relation.references7. Yu., M., Zheng, Y., Tian, J. (2020). Study on the biodegradability of modified starch/polylactic acid (PLA) composite materials. RSC Adv., 10, 26298. DOI: 10.1039/D0RA00274G.
dc.relation.references8. Farahnaky, A., Saberi, B., Majzoobi, M. (2013). Glycerol on Properties of Wheat Starch Films. J Texture Stud, 44, 176–186. https://doi.org/10.1111/jtxs.12007.
dc.relation.references9. Zhu, Xiong, Yong, Yang, Jianxiang, Feng, Xiaomin, Zhang, Chuanzhi, Zhang, Zhaobin, Tang, Jin, Zhu. (2013). Preparation and characterization of poly(lactic acid)/ starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92, 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007.
dc.relation.references10. Muller, J., González-Martínez, C., Chiralt A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials (Basel), 10(8), 952. doi: 10.3390/ma10080952.
dc.relation.references11. Guo J., Wang J., He Y., Sun H., Chen, X., Zheng, Q., Xie, H. (2020). Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil. Polymers (Basel), 12, 632–639.
dc.relation.references12. Kulish, B. I., Kechur, D. I., Masyuk, A. S., Levytskyi, V. E. (2022). Peculiarities of the effect of epoxidized soybean oil on the properties of polylactide materials. Chemistry, technology of substances and their application, 5 (2), 202–207.
dc.relation.references13. Masyuk, A., Kechur, D., Levytskyi, V., Kulish, B. (2022). Starch-containing polylactide nanocomposites. Nanomaterials: applications & properties: proceedings of the 2022 IEEE 12th International conference. Krakow, 11–16 September 2022, NEE15-1–NEE15-4.
dc.relation.references14. Masyuk, A. S., Levytskyi, V. E., Kechur, D. I., Kulish, B. I., Katruk, D. S. (2022). Influence of calcium carbonate on the operational properties of polylactide composites. Chemistry, Technology and Application of Substances substances and their application, 5 (1), 180–185.
dc.relation.referencesen1. Lee, Tin Sin, Bee, Soo Tueen. (2019). Polylactic Acid 2nd Edition. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. Oxford: William Andrew, 422.
dc.relation.referencesen2. Maria, Laura, Di, Lorenzo, René, Androsch. (2018). Industrial Applications of Poly(lactic acid). Cham: Springer, 228. https://doi.org/10.1007/978-3-319-75459-8.
dc.relation.referencesen3. Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R.A., El-Khatib, S. (2022). Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials, 15, 4312. https://doi.org/10.3390/ma15124312.
dc.relation.referencesen4. Casalini, T., Rossi, F., Castrovinci, A., Perale, G. (2019). A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol,7, 259. doi: 10.3389/fbioe.2019.00259.
dc.relation.referencesen5. Kotiba, Hamada, Mosab, Kaseemb, Muhammad, Ayyoobd, Jinho, Jooa, Fawaz, Deric. (2018). Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001.
dc.relation.referencesen6. Jayarathna, S., Andersson, M., Andersson, R. (2022). Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14, 4557. https://doi.org/10.3390/polym14214557.
dc.relation.referencesen7. Yu., M., Zheng, Y., Tian, J. (2020). Study on the biodegradability of modified starch/polylactic acid (PLA) composite materials. RSC Adv., 10, 26298. DOI: 10.1039/D0RA00274G.
dc.relation.referencesen8. Farahnaky, A., Saberi, B., Majzoobi, M. (2013). Glycerol on Properties of Wheat Starch Films. J Texture Stud, 44, 176–186. https://doi.org/10.1111/jtxs.12007.
dc.relation.referencesen9. Zhu, Xiong, Yong, Yang, Jianxiang, Feng, Xiaomin, Zhang, Chuanzhi, Zhang, Zhaobin, Tang, Jin, Zhu. (2013). Preparation and characterization of poly(lactic acid)/ starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92, 810–816. https://doi.org/10.1016/j.carbpol.2012.09.007.
dc.relation.referencesen10. Muller, J., González-Martínez, C., Chiralt A. (2017). Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials (Basel), 10(8), 952. doi: 10.3390/ma10080952.
dc.relation.referencesen11. Guo J., Wang J., He Y., Sun H., Chen, X., Zheng, Q., Xie, H. (2020). Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil. Polymers (Basel), 12, 632–639.
dc.relation.referencesen12. Kulish, B. I., Kechur, D. I., Masyuk, A. S., Levytskyi, V. E. (2022). Peculiarities of the effect of epoxidized soybean oil on the properties of polylactide materials. Chemistry, technology of substances and their application, 5 (2), 202–207.
dc.relation.referencesen13. Masyuk, A., Kechur, D., Levytskyi, V., Kulish, B. (2022). Starch-containing polylactide nanocomposites. Nanomaterials: applications & properties: proceedings of the 2022 IEEE 12th International conference. Krakow, 11–16 September 2022, NEE15-1–NEE15-4.
dc.relation.referencesen14. Masyuk, A. S., Levytskyi, V. E., Kechur, D. I., Kulish, B. I., Katruk, D. S. (2022). Influence of calcium carbonate on the operational properties of polylactide composites. Chemistry, Technology and Application of Substances substances and their application, 5 (1), 180–185.
dc.relation.urihttps://doi.org/10.1007/978-3-319-75459-8
dc.relation.urihttps://doi.org/10.3390/ma15124312
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2018.07.001
dc.relation.urihttps://doi.org/10.3390/polym14214557
dc.relation.urihttps://doi.org/10.1111/jtxs.12007
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2012.09.007
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectкрохмаль
dc.subjectгліцерин
dc.subjectепоксидована соєва олива
dc.subjectпластифікування
dc.subjectкут змочування
dc.subjectstarch
dc.subjectglycerin
dc.subjectepoxidized soybean oil
dc.subjectplasticization
dc.subjectwetting angle
dc.titleФізико-хімічні взаємодії в пластифікованих крохмальних матеріалах
dc.title.alternativePhysico-chemical interactions in plasticized starch materials
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v6n1_Masyuk_A_S-Physico_chemical_interactions_124-130.pdf
Size:
1.98 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v6n1_Masyuk_A_S-Physico_chemical_interactions_124-130__COVER.png
Size:
458.79 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: