Data Correction Using Hamming Coding and Hash Function and its CUDA Implementation
dc.citation.epage | 104 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Advances in Cyber-Physical Systems | |
dc.citation.spage | 100 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Melnyk, Anatoliy | |
dc.contributor.author | Kozak, Nazar | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-06-16T08:12:17Z | |
dc.date.available | 2020-06-16T08:12:17Z | |
dc.date.created | 2019-02-26 | |
dc.date.issued | 2019-02-26 | |
dc.description.abstract | This article deals with the use of block code for the entire amount of data. A hash function is used to increase the number of errors that can be detected. The automatic parallelization of this code by using special means is considered. | |
dc.format.extent | 100-104 | |
dc.format.pages | 5 | |
dc.identifier.citation | Melnyk A. Data Correction Using Hamming Coding and Hash Function and its CUDA Implementation / Anatoliy Melnyk, Nazar Kozak // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 2. — P. 100–104. | |
dc.identifier.citationen | Melnyk A. Data Correction Using Hamming Coding and Hash Function and its CUDA Implementation / Anatoliy Melnyk, Nazar Kozak // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 2. — P. 100–104. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/52232 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Advances in Cyber-Physical Systems, 2 (4), 2019 | |
dc.relation.ispartof | Advances in Cyber-Physical Systems, 2 (4), 2019 | |
dc.relation.references | [1] History of Hamming Codes. Archived from the original on 2007-10-25. Retrieved 2008-04-03. | |
dc.relation.references | [2] NVIDIA CUDA Programming Guide, Version 2.1, 2008 | |
dc.relation.references | [3] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan. A Compiler Framework for Optimization of Affine Loop Nests for GPGPUs. In Proc. International Conference on Supercomputing, 2008. | |
dc.relation.references | [4] N. Fujimoto. Fast Matrix-Vector Multiplication on GeForce 8800 GTX. In Proc. IEEE International Parallel & Distributed Processing Symposium, 2008 | |
dc.relation.references | [5] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High performance discrete Fourier transforms on graphics processors. In Proc. Supercomputing, 2008. | |
dc.relation.references | [6] G. Ruetsch and P. Micikevicius. Optimize matrix transpose in CUDA. NVIDIA, 2009. | |
dc.relation.references | [7] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu. CUDAlite: Reducing GPU programming Complexity, In Proc. Worksops on Languages and Compilers for Parallel Computing, 2008 | |
dc.relation.references | [8] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear algebra. In Proc. Supercomputing, 2008. | |
dc.relation.references | [9] J. A. Stratton, S. S. Stone, and W. W. Hwu. MCUDA:An efficient implementation of CUDA kernels on multicores. IMPACT Technical Report IMPACT-08-01, UIUC, Feb. 2008. | |
dc.relation.references | [10] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, J. A. Stratton, and W. W. Hwu. Optimization space pruning for a multithreaded GPU. In Proc. International Symposium on Code Generation and Optimization, 2008. | |
dc.relation.references | [11] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.W. Hwu. Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2008. | |
dc.relation.references | [12] S. Hong and H. Kim. An analytical model for GPU architecture with memory-level and thread-level parallelism awareness. In Proc. International Symposium on Computer Architecture, 2009. | |
dc.relation.referencesen | [1] History of Hamming Codes. Archived from the original on 2007-10-25. Retrieved 2008-04-03. | |
dc.relation.referencesen | [2] NVIDIA CUDA Programming Guide, Version 2.1, 2008 | |
dc.relation.referencesen | [3] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan. A Compiler Framework for Optimization of Affine Loop Nests for GPGPUs. In Proc. International Conference on Supercomputing, 2008. | |
dc.relation.referencesen | [4] N. Fujimoto. Fast Matrix-Vector Multiplication on GeForce 8800 GTX. In Proc. IEEE International Parallel & Distributed Processing Symposium, 2008 | |
dc.relation.referencesen | [5] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High performance discrete Fourier transforms on graphics processors. In Proc. Supercomputing, 2008. | |
dc.relation.referencesen | [6] G. Ruetsch and P. Micikevicius. Optimize matrix transpose in CUDA. NVIDIA, 2009. | |
dc.relation.referencesen | [7] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu. CUDAlite: Reducing GPU programming Complexity, In Proc. Worksops on Languages and Compilers for Parallel Computing, 2008 | |
dc.relation.referencesen | [8] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear algebra. In Proc. Supercomputing, 2008. | |
dc.relation.referencesen | [9] J. A. Stratton, S. S. Stone, and W. W. Hwu. MCUDA:An efficient implementation of CUDA kernels on multicores. IMPACT Technical Report IMPACT-08-01, UIUC, Feb. 2008. | |
dc.relation.referencesen | [10] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, J. A. Stratton, and W. W. Hwu. Optimization space pruning for a multithreaded GPU. In Proc. International Symposium on Code Generation and Optimization, 2008. | |
dc.relation.referencesen | [11] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.W. Hwu. Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2008. | |
dc.relation.referencesen | [12] S. Hong and H. Kim. An analytical model for GPU architecture with memory-level and thread-level parallelism awareness. In Proc. International Symposium on Computer Architecture, 2009. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2019 | |
dc.rights.holder | © Melnyk A., Kozak N., 2019 | |
dc.subject | GPGPU | |
dc.subject | Hamming code | |
dc.subject | hash function | |
dc.subject | automatic parallelization | |
dc.title | Data Correction Using Hamming Coding and Hash Function and its CUDA Implementation | |
dc.type | Article |
Files
License bundle
1 - 1 of 1