Unsupervised Open Relation Extraction
dc.citation.epage | 94 | |
dc.citation.spage | 93 | |
dc.contributor.affiliation | National Technical University “Kharkiv Polytechnic Institute” | |
dc.contributor.author | Tarasenko, Yaroslav | |
dc.contributor.author | Petrasova, Svitlana | |
dc.coverage.placename | Львів ; Харків | |
dc.coverage.placename | Lviv ; Kharkiv | |
dc.coverage.temporal | 22-23 April 2021, Kharkiv | |
dc.date.accessioned | 2022-05-23T10:50:12Z | |
dc.date.available | 2022-05-23T10:50:12Z | |
dc.date.created | 2021-05-04 | |
dc.date.issued | 2021-05-04 | |
dc.description.abstract | The paper describes an approach to open relation extraction based on unsupervised machine learning. The state-of-the-art methods for extracting semantic relations are analyzed. The algorithm of automatic open relation extraction using statistical, syntactic and contextual information is proposed. The results of the study can be used in information retrieval, summarization, machine translation, question-answering systems, etc. | |
dc.format.extent | 93-94 | |
dc.format.pages | 2 | |
dc.identifier.citation | Tarasenko Y. Unsupervised Open Relation Extraction / Yaroslav Tarasenko, Svitlana Petrasova // Computational linguistics and intelligent systems, 22-23 April 2021, Kharkiv. — Lviv ; Kharkiv, 2021. — Vol Vol. II : Proceedings of the 5th International conference, COLINS 2021, Workshop, Kharkiv, Ukraine, April 22-23. — P. 93–94. | |
dc.identifier.citationen | Tarasenko Y. Unsupervised Open Relation Extraction / Yaroslav Tarasenko, Svitlana Petrasova // Computational linguistics and intelligent systems, 22-23 April 2021, Kharkiv. — Lviv ; Kharkiv, 2021. — Vol Vol. II : Proceedings of the 5th International conference, COLINS 2021, Workshop, Kharkiv, Ukraine, April 22-23. — P. 93–94. | |
dc.identifier.issn | 2523-4013 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/56806 | |
dc.language.iso | en | |
dc.relation.ispartof | Computational linguistics and intelligent systems, 2021 | |
dc.relation.references | [1] O. Shanidze, S. Petrasova, Extraction of Semantic Relations from Wikipedia Text Corpus, in: Proceedings of 3rd International Conference: Computational Linguistics and Intelligent Systems (CoLInS 2019), Kharkiv, Ukraine, 2019, pp. P. 74–75. | |
dc.relation.references | [2] Peiqian Liu, Xiaojie Wang, A Semieager Classifier for Open Relation Extraction, in: Mathematical Problems in Engineering, 2018. doi: https://doi.org/10.1155/2018/4929674. | |
dc.relation.references | [3] F. Petroni, L.D. Corro, R. Gemulla, CORE: Context-Aware Open Relation Extraction with Factorization Machines, in: Association for Computational Linguistics, 2015. doi: 10.18653/v1/d15-1204 | |
dc.relation.references | [4] A.O. Shelmanov, V.A. Isakov, M.A. Stankevich, I.V. Smirnov, Open information extraction from texts. Part I. Statement of the problem and overview of methods, in: Artificial Intelligence And Decision Making, 2018, pp. 47-61. URL: http://www.isa.ru/aidt/images/documents/2018-02/47-61.pdf | |
dc.relation.references | [5] D.S. Batista, B. Martins, M. J. Silva, Semi-supervised bootstrapping of relationship extractors with distributional semantics, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 499–504. | |
dc.relation.referencesen | [1] O. Shanidze, S. Petrasova, Extraction of Semantic Relations from Wikipedia Text Corpus, in: Proceedings of 3rd International Conference: Computational Linguistics and Intelligent Systems (CoLInS 2019), Kharkiv, Ukraine, 2019, pp. P. 74–75. | |
dc.relation.referencesen | [2] Peiqian Liu, Xiaojie Wang, A Semieager Classifier for Open Relation Extraction, in: Mathematical Problems in Engineering, 2018. doi: https://doi.org/10.1155/2018/4929674. | |
dc.relation.referencesen | [3] F. Petroni, L.D. Corro, R. Gemulla, CORE: Context-Aware Open Relation Extraction with Factorization Machines, in: Association for Computational Linguistics, 2015. doi: 10.18653/v1/d15-1204 | |
dc.relation.referencesen | [4] A.O. Shelmanov, V.A. Isakov, M.A. Stankevich, I.V. Smirnov, Open information extraction from texts. Part I. Statement of the problem and overview of methods, in: Artificial Intelligence And Decision Making, 2018, pp. 47-61. URL: http://www.isa.ru/aidt/images/documents/2018-02/47-61.pdf | |
dc.relation.referencesen | [5] D.S. Batista, B. Martins, M. J. Silva, Semi-supervised bootstrapping of relationship extractors with distributional semantics, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 499–504. | |
dc.relation.uri | https://doi.org/10.1155/2018/4929674 | |
dc.relation.uri | http://www.isa.ru/aidt/images/documents/2018-02/47-61.pdf | |
dc.rights.holder | copyrighted by its editors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). | |
dc.rights.holder | © 2021 Copyright for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. This volume is published and | |
dc.subject | Information Extraction | |
dc.subject | Open Relation Extraction | |
dc.subject | semantic relation | |
dc.subject | TF-IDF | |
dc.subject | parsing | |
dc.subject | cluster analysis | |
dc.title | Unsupervised Open Relation Extraction | |
dc.type | Article |
Files
Original bundle
1 - 2 of 2
- Name:
- 2021vVol_II___Proceedings_of_the_5th_International_conference_COLINS_2021_Workshop_Kharkiv_Ukraine_April_22-23_Tarasenko_Y-Unsupervised_Open_Relation_93-94.pdf
- Size:
- 247.72 KB
- Format:
- Adobe Portable Document Format
- Name:
- 2021vVol_II___Proceedings_of_the_5th_International_conference_COLINS_2021_Workshop_Kharkiv_Ukraine_April_22-23_Tarasenko_Y-Unsupervised_Open_Relation_93-94__COVER.png
- Size:
- 945.32 KB
- Format:
- Portable Network Graphics
License bundle
1 - 1 of 1