Features of Building Wireless Computer Networks to Increase Noise Immunity

dc.citation.epage174
dc.citation.issue2
dc.citation.journalTitleДосягнення у кіберфізичних системах
dc.citation.spage170
dc.citation.volume9
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorVoloshyn, Mykola
dc.contributor.authorOleksiv, Maksym
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-06T08:48:08Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe paper analyzes existing types of wireless computer networks, technologies, standards, and potential types of interference. Based on this analysis, a classification of wireless information transmission methods has been proposed, taking into account their parameters and task specificity. The primary issues affecting interference resistance in wireless networks have been highlighted. Technical features, advantages, and limitations of each type have been examined, along with their suitability for various scenarios and operational environments. Additionally, the paper offers an overview of innovative trends and emerging research areas aimed at enhancing interference resistance in the rapidly evolving field of wireless network technology.
dc.format.extent170-174
dc.format.pages5
dc.identifier.citationVoloshyn M. Features of Building Wireless Computer Networks to Increase Noise Immunity / Mykola Voloshyn, Maksym Oleksiv // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 170–174.
dc.identifier.citationenVoloshyn M. Features of Building Wireless Computer Networks to Increase Noise Immunity / Mykola Voloshyn, Maksym Oleksiv // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 2. — P. 170–174.
dc.identifier.doidoi.org/10.23939/acps2024.02.170
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117377
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofДосягнення у кіберфізичних системах, 2 (9), 2024
dc.relation.ispartofAdvances in Cyber-Physical Systems, 2 (9), 2024
dc.relation.references[1] L. Stosic, S. Dermendzhieva, L. Tomczyk (2020). “Information and communication technologies as a source of education”, World Journal on Educational Technology: Current Issues, 12(2), 128–135. DOI: https://doi.org/10.18844/wjet.v12i2.4815.
dc.relation.references[2] Pundalik Chavan, Anooja Ali, Ramaprasad H C, Ramachandra H V, Hari Krishna H, & E G Satish (2023). Analysis of Wireless Networks: Successful and Failure Existing Technique. In Satyasai Jagannath Nanda & Rajendra Prasad Yadav (eds.), Data Science and Intelligent Computing Techniques (pp. 877–891). SCRS, India. DOI: https://doi.org/10.56155/978-81-955020-2-8-75.
dc.relation.references[3] L. Wu et al. (2020). Artificial Neural Network Based Path Loss Prediction for Wireless Communication Network. IEEE Access, 8, 199523–199538. DOI: https://doi.org/10.1109/ACCESS.2020.3035209.
dc.relation.references[4] Y. Zuo, J. Guo, N. Gao, Y. Zhu, S. Jin, & X. Li (2023). A Survey of Blockchain and Artificial Intelligence for 6G Wireless Communications. IEEE Communications Surveys & Tutorials, 25(4), 2494–2528. DOI: https://doi.org/10.1109/COMST.2023.3315374.
dc.relation.references[5] Tarnavskyi Y. A., Kuzmenko I. M. Organisation of computer networks. Kyiv: Igor Sikorsky Kyiv Polytechnic Institute, 2018, p. 259. Available at: https://ela.kpi.ua/server/api/core/bitstreams/e0a0c843-a57d-4d82-8f42-0eba294bef1f/content (Accessed: 10/14/2024).
dc.relation.references[6] Shukla, S., Meghana, K.M., Manjunath, C.R., & Shantosh, N. (2017). Comparison of Wireless Network over Wired Network and Its Type. Int. J. Res. Granthaalayah, 5, 14–20. DOI: https://doi.org/10.5281/zenodo.572289.
dc.relation.references[7] Jordi Salazar. Wireless networks. Czech Technical University of Prague. Faculty of electrical engineering. ISBN: 978-80-01-06197-8 (Online), 2017. [Electronic resource]. Available at: https://upcommons.upc.edu/bitstream/handle/2117/110811/LM01_F_EN.pdf (Accessed: 10/14/2024).
dc.relation.references[8] Wireless Network Interference and Optimization. [Electronic resource]. Available at: https://interferencetechnology.com/wireless-network-interference-and-optimization/ (Accessed: 10/14/2024).
dc.relation.references[9] User’s and developer’s manual of BitSimulator. [Electronic resource]. Available at: http://eugen.dedu.free.fr/bitsimulator/manual.pdf (Accessed: 10/14/2024).
dc.relation.references[10] H. Mabed. (2017). Enhanced spread in time on-off keying technique for dense Terahertz nanonetworks. In 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 710–716. DOI: https://doi.org/10.1109/ISCC.2017.8024611.
dc.relation.references[11] Yeh, T.-Cj., Dong, Y., & Ye, S. (2023). Molecular Diffusion. In An Introduction to Solute Transport in Heterogeneous Geologic Media (pp. 93–122). Cambridge University Press. DOI: https://doi.org/10.1017/9781009049511.005.
dc.relation.references[12] J. Wang, X. Liu, M. Peng, & M. Daneshmand (2020). Performance Analysis of D-MoSK Modulation in Mobile Diffusive-Drift Molecular Communications. IEEE Internet of Things Journal, 7(11), 11318–11326. DOI: https://doi.org/10.1109/JIOT.2020.2997372.
dc.relation.references[13] B. C. Akdeniz, A. E. Pusane, & T. Tugcu (2018). Position-based modulation in molecular communications. Nano Communication Networks, 16, 60–68. DOI: https://doi.org/10.1016/j.nancom.2018.01.004.
dc.relation.references[14] M. Hernandez, R. Kohno, T. Kobayashi, & M. Kim(2022). New Revision of IEEE 802.15.6 Wireless Body Area Networks. 2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT), Lincoln, NE, USA, 1–5. DOI: https://doi.org/10.1109/ISMICT56646.2022.9828139.
dc.relation.references[15] Park, K., Baek, J., Kim, S., Jeong, M., & Kim, Y. (2019). Touch-Based Dual-Band System Combined Human Body Communication and Wireless LAN for Wearable Devices. Electronics, 8, 335. DOI: https://doi.org/10.3390/electronics8030335.
dc.relation.references[16] N. Choudhury, R. Matam, M. Mukherjee, & J. Lloret.(2020). A Performance-to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes. IEEE Access, 8, 41936–41950. DOI: https://doi.org/10.1109/ACCESS.2020.2976654.
dc.relation.references[17] Telecommunications Signals & Systems Lab Equipment. [Electronic resource]. Available at: https://tecnoedu.com/Download/Emona-TIMS-curriculum_background-r1.pdf (Accessed: 10/14/2024).
dc.relation.references[18] D. Verma et al. (2020). A Design of 8 fJ/Conversion-Step 10-bit 8MS/s Low Power Asynchronous SAR ADC for IEEE 802.15.1 IoT Sensor Based Applications. IEEE Access, 8, 85869–85879. DOI: https://doi.org/10.1109/ACCESS.2020.2992750.
dc.relation.references[19] DongFeng Fang, Yi Qian, & Rose Qingyang Hu. (2024). Introduction to 5G Wireless Systems. In 5G Wireless Network Security and Privacy (pp. 1–6). IEEE. DOI: https://doi.org/10.1002/9781119784340.ch1.
dc.relation.references[20] C. Deng et al. (2020). IEEE 802.11be Wi-Fi 7: New Challenges and Opportunities. IEEE Communications Surveys & Tutorials, 22(4), 2136–2166. DOI: https://doi.org/10.1109/COMST.2020.3012715.
dc.relation.references[21] Behnam Kamali. (2018). The IEEE 802.16 Standards and the WiMAX Technology. In AeroMACS: An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems (pp. 189–258). IEEE. DOI: https://doi.org/10.1002/9781119281139.ch5.
dc.relation.references[22] D. M. Molla, H. Badis, L. George, & M. Berbineau (2022). Software Defined Radio Platforms for Wireless Technologies. IEEE Access, 10, 26203–26229. DOI: https://doi.org/10.1109/ACCESS.2022.3154364.
dc.relation.referencesen[1] L. Stosic, S. Dermendzhieva, L. Tomczyk (2020). "Information and communication technologies as a source of education", World Journal on Educational Technology: Current Issues, 12(2), 128–135. DOI: https://doi.org/10.18844/wjet.v12i2.4815.
dc.relation.referencesen[2] Pundalik Chavan, Anooja Ali, Ramaprasad H C, Ramachandra H V, Hari Krishna H, & E G Satish (2023). Analysis of Wireless Networks: Successful and Failure Existing Technique. In Satyasai Jagannath Nanda & Rajendra Prasad Yadav (eds.), Data Science and Intelligent Computing Techniques (pp. 877–891). SCRS, India. DOI: https://doi.org/10.56155/978-81-955020-2-8-75.
dc.relation.referencesen[3] L. Wu et al. (2020). Artificial Neural Network Based Path Loss Prediction for Wireless Communication Network. IEEE Access, 8, 199523–199538. DOI: https://doi.org/10.1109/ACCESS.2020.3035209.
dc.relation.referencesen[4] Y. Zuo, J. Guo, N. Gao, Y. Zhu, S. Jin, & X. Li (2023). A Survey of Blockchain and Artificial Intelligence for 6G Wireless Communications. IEEE Communications Surveys & Tutorials, 25(4), 2494–2528. DOI: https://doi.org/10.1109/COMST.2023.3315374.
dc.relation.referencesen[5] Tarnavskyi Y. A., Kuzmenko I. M. Organisation of computer networks. Kyiv: Igor Sikorsky Kyiv Polytechnic Institute, 2018, p. 259. Available at: https://ela.kpi.ua/server/api/core/bitstreams/e0a0c843-a57d-4d82-8f42-0eba294bef1f/content (Accessed: 10/14/2024).
dc.relation.referencesen[6] Shukla, S., Meghana, K.M., Manjunath, C.R., & Shantosh, N. (2017). Comparison of Wireless Network over Wired Network and Its Type. Int. J. Res. Granthaalayah, 5, 14–20. DOI: https://doi.org/10.5281/zenodo.572289.
dc.relation.referencesen[7] Jordi Salazar. Wireless networks. Czech Technical University of Prague. Faculty of electrical engineering. ISBN: 978-80-01-06197-8 (Online), 2017. [Electronic resource]. Available at: https://upcommons.upc.edu/bitstream/handle/2117/110811/LM01_F_EN.pdf (Accessed: 10/14/2024).
dc.relation.referencesen[8] Wireless Network Interference and Optimization. [Electronic resource]. Available at: https://interferencetechnology.com/wireless-network-interference-and-optimization/ (Accessed: 10/14/2024).
dc.relation.referencesen[9] User’s and developer’s manual of BitSimulator. [Electronic resource]. Available at: http://eugen.dedu.free.fr/bitsimulator/manual.pdf (Accessed: 10/14/2024).
dc.relation.referencesen[10] H. Mabed. (2017). Enhanced spread in time on-off keying technique for dense Terahertz nanonetworks. In 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 710–716. DOI: https://doi.org/10.1109/ISCC.2017.8024611.
dc.relation.referencesen[11] Yeh, T.-Cj., Dong, Y., & Ye, S. (2023). Molecular Diffusion. In An Introduction to Solute Transport in Heterogeneous Geologic Media (pp. 93–122). Cambridge University Press. DOI: https://doi.org/10.1017/9781009049511.005.
dc.relation.referencesen[12] J. Wang, X. Liu, M. Peng, & M. Daneshmand (2020). Performance Analysis of D-MoSK Modulation in Mobile Diffusive-Drift Molecular Communications. IEEE Internet of Things Journal, 7(11), 11318–11326. DOI: https://doi.org/10.1109/JIOT.2020.2997372.
dc.relation.referencesen[13] B. C. Akdeniz, A. E. Pusane, & T. Tugcu (2018). Position-based modulation in molecular communications. Nano Communication Networks, 16, 60–68. DOI: https://doi.org/10.1016/j.nancom.2018.01.004.
dc.relation.referencesen[14] M. Hernandez, R. Kohno, T. Kobayashi, & M. Kim(2022). New Revision of IEEE 802.15.6 Wireless Body Area Networks. 2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT), Lincoln, NE, USA, 1–5. DOI: https://doi.org/10.1109/ISMICT56646.2022.9828139.
dc.relation.referencesen[15] Park, K., Baek, J., Kim, S., Jeong, M., & Kim, Y. (2019). Touch-Based Dual-Band System Combined Human Body Communication and Wireless LAN for Wearable Devices. Electronics, 8, 335. DOI: https://doi.org/10.3390/electronics8030335.
dc.relation.referencesen[16] N. Choudhury, R. Matam, M. Mukherjee, & J. Lloret.(2020). A Performance-to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes. IEEE Access, 8, 41936–41950. DOI: https://doi.org/10.1109/ACCESS.2020.2976654.
dc.relation.referencesen[17] Telecommunications Signals & Systems Lab Equipment. [Electronic resource]. Available at: https://tecnoedu.com/Download/Emona-TIMS-curriculum_background-r1.pdf (Accessed: 10/14/2024).
dc.relation.referencesen[18] D. Verma et al. (2020). A Design of 8 fJ/Conversion-Step 10-bit 8MS/s Low Power Asynchronous SAR ADC for IEEE 802.15.1 IoT Sensor Based Applications. IEEE Access, 8, 85869–85879. DOI: https://doi.org/10.1109/ACCESS.2020.2992750.
dc.relation.referencesen[19] DongFeng Fang, Yi Qian, & Rose Qingyang Hu. (2024). Introduction to 5G Wireless Systems. In 5G Wireless Network Security and Privacy (pp. 1–6). IEEE. DOI: https://doi.org/10.1002/9781119784340.ch1.
dc.relation.referencesen[20] C. Deng et al. (2020). IEEE 802.11be Wi-Fi 7: New Challenges and Opportunities. IEEE Communications Surveys & Tutorials, 22(4), 2136–2166. DOI: https://doi.org/10.1109/COMST.2020.3012715.
dc.relation.referencesen[21] Behnam Kamali. (2018). The IEEE 802.16 Standards and the WiMAX Technology. In AeroMACS: An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems (pp. 189–258). IEEE. DOI: https://doi.org/10.1002/9781119281139.ch5.
dc.relation.referencesen[22] D. M. Molla, H. Badis, L. George, & M. Berbineau (2022). Software Defined Radio Platforms for Wireless Technologies. IEEE Access, 10, 26203–26229. DOI: https://doi.org/10.1109/ACCESS.2022.3154364.
dc.relation.urihttps://doi.org/10.18844/wjet.v12i2.4815
dc.relation.urihttps://doi.org/10.56155/978-81-955020-2-8-75
dc.relation.urihttps://doi.org/10.1109/ACCESS.2020.3035209
dc.relation.urihttps://doi.org/10.1109/COMST.2023.3315374
dc.relation.urihttps://ela.kpi.ua/server/api/core/bitstreams/e0a0c843-a57d-4d82-8f42-0eba294bef1f/content
dc.relation.urihttps://doi.org/10.5281/zenodo.572289
dc.relation.urihttps://upcommons.upc.edu/bitstream/handle/2117/110811/LM01_F_EN.pdf
dc.relation.urihttps://interferencetechnology.com/wireless-network-interference-and-optimization/
dc.relation.urihttp://eugen.dedu.free.fr/bitsimulator/manual.pdf
dc.relation.urihttps://doi.org/10.1109/ISCC.2017.8024611
dc.relation.urihttps://doi.org/10.1017/9781009049511.005
dc.relation.urihttps://doi.org/10.1109/JIOT.2020.2997372
dc.relation.urihttps://doi.org/10.1016/j.nancom.2018.01.004
dc.relation.urihttps://doi.org/10.1109/ISMICT56646.2022.9828139
dc.relation.urihttps://doi.org/10.3390/electronics8030335
dc.relation.urihttps://doi.org/10.1109/ACCESS.2020.2976654
dc.relation.urihttps://tecnoedu.com/Download/Emona-TIMS-curriculum_background-r1.pdf
dc.relation.urihttps://doi.org/10.1109/ACCESS.2020.2992750
dc.relation.urihttps://doi.org/10.1002/9781119784340.ch1
dc.relation.urihttps://doi.org/10.1109/COMST.2020.3012715
dc.relation.urihttps://doi.org/10.1002/9781119281139.ch5
dc.relation.urihttps://doi.org/10.1109/ACCESS.2022.3154364
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Voloshyn M., Oleksiv M., 2024
dc.subjectWireless computer networks
dc.subjectLocal area network
dc.subjectComputer equipment
dc.subjectInterference
dc.subjectInterference immunity
dc.titleFeatures of Building Wireless Computer Networks to Increase Noise Immunity
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n2_Voloshyn_M-Features_of_Building_Wireless_170-174.pdf
Size:
205.17 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n2_Voloshyn_M-Features_of_Building_Wireless_170-174__COVER.png
Size:
552.29 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: