Cementitious systems for high-performance concretes with improved corrosion resistance
dc.citation.epage | 115 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Теорія і практика будівництва | |
dc.citation.spage | 109 | |
dc.citation.volume | 6 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кіракевич, І. І. | |
dc.contributor.author | Русин, Б. Г. | |
dc.contributor.author | Бобецький, Ю. Б. | |
dc.contributor.author | Kirakevych, Iryna | |
dc.contributor.author | Rusyn, Bohdan | |
dc.contributor.author | Bobetskyi, Yurii | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-07-23T06:11:51Z | |
dc.date.created | 2024-02-24 | |
dc.date.issued | 2024-02-24 | |
dc.description.abstract | Наведено результати дослідження цементуючих систем “портландцемент ПЦ І-500 Р-Н – активні мінеральні добавки – мікронаповнювачі – суперпластифікатор – прискорювачі тверднення” для одержання високофункціональних бетонів підвищеної корозійної стійкості. Досліджено стійкість цементуючих систем до корозії, спричиненої впливом хімічних речовин – сульфатної корозії (клас ХА), що об’єднує процеси утворення та накопичення малорозчинних солей та зумовлює збільшення об’єму із переходом у тверду фазу з утворенням кристалів і супроводжується внутрішніми напруженнями та деструктивними явищами у бетоні. Корозійну стійкість цементуючих систем визначали згідно з ДСТУ Б 27677:2011 за зміною міцності зразків після шести місяців їх зберігання у середовищі натрію сульфату (концентрація [SO4 2-]=10 г/л). Значення коефіцієнта КС6=1,1 для високофункціональних бетонів на основі цементуючих систем свідчить про підвищення його стійкості до агресивних середовищ. Корозійну стійкість також визначали згідно з прискореною методикою за коефіцієнтом міцності при згині, що дорівнює відношенню міцності на згин зразків після витримування вісім тижнів у сульфатному середовищі (концентрація [SO4 2-] = 30 г/л) до міцності на згин зразків, що тверднули вісім тижнів у воді. Зростання корозійної стійкості зразків на основі цементуючих систем на 2–12 % пояснюється створенням щільної та дрібнопористої мікроструктури. Високодисперсні добавки пуцоланової дії забезпечують зв’язування портландиту в C-S-H фази, що сприяє кольматації пор із віком тверднення та забезпечує підвищення корозійної стійкості цементного каменю у бетоні. Застосування цементуючих систем для високофункціональних бетонів із підвищеною корозійною стійкістю сприятиме будівництву споруд, що перебувають під впливом агресивних середовищ, зокрема підземних та промислових стічних вод, які містять хлориди та сульфати. | |
dc.description.abstract | The article presents the results of research on cementitious systems "Portland cement CEM I 42,5 R - active mineral additives - microfillers - superplasticizer - hardening accelerators" for high-performance concrete with improved corrosion resistance. The resistance of concrete to corrosion caused by the influence of chemical substances was investigated - sulfate corrosion (class XA), which combines the processes of formation and accumulation of sparingly soluble salts in concrete, which are accompanied by internal stresses and destructive phenomena in concrete. The increase in corrosion resistance of high-performance concretes based on modified cementitious systems is explained mainly by the creation of a fine-crystalline microstructure with the formation of C-S-H phases, which contribute to the pores colmatation with age of hardening. | |
dc.format.extent | 109-115 | |
dc.format.pages | 7 | |
dc.identifier.citation | Kirakevych I. Cementitious systems for high-performance concretes with improved corrosion resistance / Iryna Kirakevych, Bohdan Rusyn, Yurii Bobetskyi // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 109–115. | |
dc.identifier.citationen | Kirakevych I. Cementitious systems for high-performance concretes with improved corrosion resistance / Iryna Kirakevych, Bohdan Rusyn, Yurii Bobetskyi // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 109–115. | |
dc.identifier.doi | doi.org/10.23939/jtbp2024.01.109 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111468 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Теорія і практика будівництва, 1 (6), 2024 | |
dc.relation.ispartof | Theory and Building Practice, 1 (6), 2024 | |
dc.relation.references | Sanytsky, M., Kropyvnytska, T., Heviuk, I., Sikora, P. & Braichenko, S. (2021). Development of rapid-hardening ultra-high strength cementitious composites using superzeolite and N-C-S-H-PCE alkaline nanomodifier. Eastern European Journal of Enterprise Technologies, 5 (6 (113), 62–72. Retrieved from: https://doi.org/10.15587/17294061.2021.242813. | |
dc.relation.references | Sohail, M., Kahraman, R., Nuaimi, N., Gencturk, B. & Alnahhal, W. (2021). Durability characteristics of high and ultra-high performance concretes. Journal of Building Engineering, 33, 101669. Retrieved from: https://doi.org/10.1016/j.jobe.2020.101669. | |
dc.relation.references | Aicin, P. (2003). The durability characteristics of high performance concrete. Cement and Concrete Composites, 25 (4–5), 409–420. Retrieved from: https://doi.org/10.1016/S0958-9465(02)00081-1. | |
dc.relation.references | Sanytsky, M., Rusyn, B., Kirakevych, I. & Kaminskyy, A. (2023). Architectural self-compacting concrete based on nano-modified cementitious systems. International Conference Current Issues of Civil and Environmental Engineering Lviv - Košice – Rzeszów. Proceedings of CEE, 372–380. Retrieved from: https://doi.org/10.1007/978-3031-44955-0_37. | |
dc.relation.references | Jasiczak, J., Wdowska, A. & Rudnicki, T. (2008). Betony ultrawysokowartościowe, właściwości, technologie, zastosowanie: Stowarzyszenie Producentow Cementu, Krakow. Retrieved from: https://www.researchgate.net/publication/342720481_Betony_ultrawysokowartosciowe__wlasciwosci_technologie_zastosowania_UltraHigh_Performance_Concretes_Properties_Technology_Applications. | |
dc.relation.references | Switonski, A., Mrozik, L. & Piekarski, P. (2004). Creating structure and properties of high performance concrete. University of Science and Technology in Bydgoszcz. Retrieved from: https://depot.ceon.pl/bitstream/handle/123456789/12475/Creating%20structure%20and%20properties%20of%20high%20performance%20concrete3.pdf?sequence=1&isAllowed=y. | |
dc.relation.references | Sanytsky, M., Kropyvnytska, T., Vakhula, O. & Bobetsky, Y. (2024). Nanomodified ultra high-performance fiber reinforced cementitious composites with enhanced operational characteristics. Proceedings of CEE 2023, 438, 362–371. Retrieved from: https://doi.org/10.1007/978-3-031-44955-0_36. | |
dc.relation.references | Runova, R., Gots, V., Rudenko, I., Konstantynovskyi, O. & Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences 230, 03016. Retrieved from: https://doi.org/10.1051/matecconf/201823003016. | |
dc.relation.references | Nivin, P., Jędrzejewska, A., Varughese, A. & James, J. (2022). Influence of pore structure on corrosion resistance of high performance concrete containing metakaolin. Cement – Wapno – Beton, 27 (5), 302-319. Retrieved from: https://doi.org/10.32047/CWB.2022.27.5.1. | |
dc.relation.references | Valcuende, M., Lliso-Ferrando, J., Ramón-Zamora, J. & Soto, J. (2021). Corrosion resistance of ultra-high performance fibre-reinforced concrete. Construction and Building Materials 306, 124914. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2021.124914. | |
dc.relation.references | Kropyvnytska, T., Sanytsky, M., Rucińska, T., & Rykhlitska, O. (2019). Development of nanomodified rapid hardening clinker-efficient concretes based on composite Portland cements. Eastern-European Journal of Enterprise Technologies, 6 (102), 38–48. Retrieved from: https://doi.org/10.15587/1729-4061.2019.185111. | |
dc.relation.references | Kirakevych, I., Sanytsky, M., Shyiko, O. & Kagarlitskiy, R. (2021). Modification of cementitious matrix of rapid-hardening high-performance concretes. Theory and Building Practice, 3 (1), 79–84. Retrieved from: https://doi.org/10.23939/jtbp2021.01.079. | |
dc.relation.references | Krivenko, P., Petropavlovskyi, O., Kovalchuk, O. (2018). A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali activated slag cement and concrete. Eastern-European Journal of Enterprise Technologies, 6 (91), 33–39. Retrieved from: https://doi.org/10.15587/1729-4061.2018.119624. | |
dc.relation.references | Borziak, O., Plugin, A., Chepurna, S., Zavalniy, O. & Dudin, O. (2019). The effect of added finely dispersed calcite on the corrosion resistance of cement compositions. IOP Conf. Series: Materials Science and Engineering, 708, 012080. DOI: 10.1088/1757-899X/708/1/012080. | |
dc.relation.references | Chousidis, N., Rakanta., E., Ioannou, I. & Batis, G. (2015). Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials. 101, 810-817. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2015.10.127. | |
dc.relation.references | Gots, V., Berdnyk, O., Lastivka, O., Maystrenko, A. & Amelina, N. (2023). Corrosion of basalt fiber with titanium dioxide coating in NaOH and Ca(OH)2 solutions. AIP Conf. Proc. 2490, 050010. Retrieved from: https://doi.org/10.1063/5.0122739. | |
dc.relation.references | Valcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E. & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Constr. Build. Mater., 28 (1), 122–128. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2011.07.029. | |
dc.relation.references | Ting, M., Wong, K., Rahman, M. & Meheron, S. (2021). Deterioration of marine concrete exposed to wetting-drying action. J. Clean. Prod, 278, 123383. Retrieved from: https://doi.org/10.1016/j.jclepro.2020.123383. | |
dc.relation.references | Sun, Y. & Wu, X. (2022). Two types of corrosion resistant high-performance concrete: ECC and EPS concrete. Advances in Civil Function Structure and Industrial Architecture. Retrieved from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003305019-38/two-types-corrosion-resistant-high-performance-concrete-ecc-eps-concreteyixin-sun-xinyi-wu. | |
dc.relation.references | Ivashchyshyn, H., Sanytsky, M., Kropyvnytska, T. & Rusyn, B. (2019). Study of low-emission multicomponent cements with a high content of supplementary cementitious materials. Eastern-European Journal of Enterprise Technologies, 4(6–100), 39–47. Retrieved from: https://doi.org/10.15587/1729-4061.2019.175472. | |
dc.relation.references | Haufe, J., Vollpracht, A. & Matschei, T. (2021). Performance test for sulfate resistance of concrete by tensile strength measurements: Determination of test criteria. Crystals, 11 (9), 1018. Retrieved from: https://doi.org/10.3390/cryst11091018. | |
dc.relation.references | Shi, Z., Shi, C., Zhao, R. & Wan, S. (2015). Comparison of alkali-silica reactions in alkali-activated slag and Portland cement mortars. Materials and Structures, 48, 743–751 Retrieved from: https://doi.org/10.1617/s11527-015-0535-4. | |
dc.relation.references | Looney, T., Leggs, M., Volz, J. & Floyd, R. (2022). Durability and corrosion resistance of ultra-high performance concretes for repair. Construction and Building Materials, 345, 128238. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2022.128238. | |
dc.relation.referencesen | Sanytsky, M., Kropyvnytska, T., Heviuk, I., Sikora, P. & Braichenko, S. (2021). Development of rapid-hardening ultra-high strength cementitious composites using superzeolite and N-C-S-H-PCE alkaline nanomodifier. Eastern European Journal of Enterprise Technologies, 5 (6 (113), 62–72. Retrieved from: https://doi.org/10.15587/17294061.2021.242813. | |
dc.relation.referencesen | Sohail, M., Kahraman, R., Nuaimi, N., Gencturk, B. & Alnahhal, W. (2021). Durability characteristics of high and ultra-high performance concretes. Journal of Building Engineering, 33, 101669. Retrieved from: https://doi.org/10.1016/j.jobe.2020.101669. | |
dc.relation.referencesen | Aicin, P. (2003). The durability characteristics of high performance concrete. Cement and Concrete Composites, 25 (4–5), 409–420. Retrieved from: https://doi.org/10.1016/S0958-9465(02)00081-1. | |
dc.relation.referencesen | Sanytsky, M., Rusyn, B., Kirakevych, I. & Kaminskyy, A. (2023). Architectural self-compacting concrete based on nano-modified cementitious systems. International Conference Current Issues of Civil and Environmental Engineering Lviv - Košice – Rzeszów. Proceedings of CEE, 372–380. Retrieved from: https://doi.org/10.1007/978-3031-44955-0_37. | |
dc.relation.referencesen | Jasiczak, J., Wdowska, A. & Rudnicki, T. (2008). Betony ultrawysokowartościowe, właściwości, technologie, zastosowanie: Stowarzyszenie Producentow Cementu, Krakow. Retrieved from: https://www.researchgate.net/publication/342720481_Betony_ultrawysokowartosciowe__wlasciwosci_technologie_zastosowania_UltraHigh_Performance_Concretes_Properties_Technology_Applications. | |
dc.relation.referencesen | Switonski, A., Mrozik, L. & Piekarski, P. (2004). Creating structure and properties of high performance concrete. University of Science and Technology in Bydgoszcz. Retrieved from: https://depot.ceon.pl/bitstream/handle/123456789/12475/Creating%20structure%20and%20properties%20of%20high%20performance%20concrete3.pdf?sequence=1&isAllowed=y. | |
dc.relation.referencesen | Sanytsky, M., Kropyvnytska, T., Vakhula, O. & Bobetsky, Y. (2024). Nanomodified ultra high-performance fiber reinforced cementitious composites with enhanced operational characteristics. Proceedings of CEE 2023, 438, 362–371. Retrieved from: https://doi.org/10.1007/978-3-031-44955-0_36. | |
dc.relation.referencesen | Runova, R., Gots, V., Rudenko, I., Konstantynovskyi, O. & Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences 230, 03016. Retrieved from: https://doi.org/10.1051/matecconf/201823003016. | |
dc.relation.referencesen | Nivin, P., Jędrzejewska, A., Varughese, A. & James, J. (2022). Influence of pore structure on corrosion resistance of high performance concrete containing metakaolin. Cement – Wapno – Beton, 27 (5), 302-319. Retrieved from: https://doi.org/10.32047/CWB.2022.27.5.1. | |
dc.relation.referencesen | Valcuende, M., Lliso-Ferrando, J., Ramón-Zamora, J. & Soto, J. (2021). Corrosion resistance of ultra-high performance fibre-reinforced concrete. Construction and Building Materials 306, 124914. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2021.124914. | |
dc.relation.referencesen | Kropyvnytska, T., Sanytsky, M., Rucińska, T., & Rykhlitska, O. (2019). Development of nanomodified rapid hardening clinker-efficient concretes based on composite Portland cements. Eastern-European Journal of Enterprise Technologies, 6 (102), 38–48. Retrieved from: https://doi.org/10.15587/1729-4061.2019.185111. | |
dc.relation.referencesen | Kirakevych, I., Sanytsky, M., Shyiko, O. & Kagarlitskiy, R. (2021). Modification of cementitious matrix of rapid-hardening high-performance concretes. Theory and Building Practice, 3 (1), 79–84. Retrieved from: https://doi.org/10.23939/jtbp2021.01.079. | |
dc.relation.referencesen | Krivenko, P., Petropavlovskyi, O., Kovalchuk, O. (2018). A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali activated slag cement and concrete. Eastern-European Journal of Enterprise Technologies, 6 (91), 33–39. Retrieved from: https://doi.org/10.15587/1729-4061.2018.119624. | |
dc.relation.referencesen | Borziak, O., Plugin, A., Chepurna, S., Zavalniy, O. & Dudin, O. (2019). The effect of added finely dispersed calcite on the corrosion resistance of cement compositions. IOP Conf. Series: Materials Science and Engineering, 708, 012080. DOI: 10.1088/1757-899X/708/1/012080. | |
dc.relation.referencesen | Chousidis, N., Rakanta., E., Ioannou, I. & Batis, G. (2015). Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials. 101, 810-817. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2015.10.127. | |
dc.relation.referencesen | Gots, V., Berdnyk, O., Lastivka, O., Maystrenko, A. & Amelina, N. (2023). Corrosion of basalt fiber with titanium dioxide coating in NaOH and Ca(OH)2 solutions. AIP Conf. Proc. 2490, 050010. Retrieved from: https://doi.org/10.1063/5.0122739. | |
dc.relation.referencesen | Valcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E. & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Constr. Build. Mater., 28 (1), 122–128. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2011.07.029. | |
dc.relation.referencesen | Ting, M., Wong, K., Rahman, M. & Meheron, S. (2021). Deterioration of marine concrete exposed to wetting-drying action. J. Clean. Prod, 278, 123383. Retrieved from: https://doi.org/10.1016/j.jclepro.2020.123383. | |
dc.relation.referencesen | Sun, Y. & Wu, X. (2022). Two types of corrosion resistant high-performance concrete: ECC and EPS concrete. Advances in Civil Function Structure and Industrial Architecture. Retrieved from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003305019-38/two-types-corrosion-resistant-high-performance-concrete-ecc-eps-concreteyixin-sun-xinyi-wu. | |
dc.relation.referencesen | Ivashchyshyn, H., Sanytsky, M., Kropyvnytska, T. & Rusyn, B. (2019). Study of low-emission multicomponent cements with a high content of supplementary cementitious materials. Eastern-European Journal of Enterprise Technologies, 4(6–100), 39–47. Retrieved from: https://doi.org/10.15587/1729-4061.2019.175472. | |
dc.relation.referencesen | Haufe, J., Vollpracht, A. & Matschei, T. (2021). Performance test for sulfate resistance of concrete by tensile strength measurements: Determination of test criteria. Crystals, 11 (9), 1018. Retrieved from: https://doi.org/10.3390/cryst11091018. | |
dc.relation.referencesen | Shi, Z., Shi, C., Zhao, R. & Wan, S. (2015). Comparison of alkali-silica reactions in alkali-activated slag and Portland cement mortars. Materials and Structures, 48, 743–751 Retrieved from: https://doi.org/10.1617/s11527-015-0535-4. | |
dc.relation.referencesen | Looney, T., Leggs, M., Volz, J. & Floyd, R. (2022). Durability and corrosion resistance of ultra-high performance concretes for repair. Construction and Building Materials, 345, 128238. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2022.128238. | |
dc.relation.uri | https://doi.org/10.15587/17294061.2021.242813 | |
dc.relation.uri | https://doi.org/10.1016/j.jobe.2020.101669 | |
dc.relation.uri | https://doi.org/10.1016/S0958-9465(02)00081-1 | |
dc.relation.uri | https://doi.org/10.1007/978-3031-44955-0_37 | |
dc.relation.uri | https://www.researchgate.net/publication/342720481_Betony_ultrawysokowartosciowe__wlasciwosci_technologie_zastosowania_UltraHigh_Performance_Concretes_Properties_Technology_Applications | |
dc.relation.uri | https://depot.ceon.pl/bitstream/handle/123456789/12475/Creating%20structure%20and%20properties%20of%20high%20performance%20concrete3.pdf?sequence=1&isAllowed=y | |
dc.relation.uri | https://doi.org/10.1007/978-3-031-44955-0_36 | |
dc.relation.uri | https://doi.org/10.1051/matecconf/201823003016 | |
dc.relation.uri | https://doi.org/10.32047/CWB.2022.27.5.1 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2021.124914 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2019.185111 | |
dc.relation.uri | https://doi.org/10.23939/jtbp2021.01.079 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2018.119624 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2015.10.127 | |
dc.relation.uri | https://doi.org/10.1063/5.0122739 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2011.07.029 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2020.123383 | |
dc.relation.uri | https://www.taylorfrancis.com/chapters/edit/10.1201/9781003305019-38/two-types-corrosion-resistant-high-performance-concrete-ecc-eps-concreteyixin-sun-xinyi-wu | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2019.175472 | |
dc.relation.uri | https://doi.org/10.3390/cryst11091018 | |
dc.relation.uri | https://doi.org/10.1617/s11527-015-0535-4 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2022.128238 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Kirakevych I., Rusyn B., Bobetskyi Y., 2024. | |
dc.subject | високофункціональні бетони | |
dc.subject | полікарбоксилати | |
dc.subject | високодисперсні мінеральні добавки | |
dc.subject | цементуючі системи | |
dc.subject | карбонізація | |
dc.subject | корозійна стійкість | |
dc.subject | high-performance concretes | |
dc.subject | polycarboxylates | |
dc.subject | highly dispersed mineral additives | |
dc.subject | сementitious systems | |
dc.subject | carbonization | |
dc.subject | corrosion resistance | |
dc.title | Cementitious systems for high-performance concretes with improved corrosion resistance | |
dc.title.alternative | Цементуючі системи для високофункціональних бетонів з підвищеною корозійною стійкістю | |
dc.type | Article |
Files
License bundle
1 - 1 of 1