Особливості переробки полілактидних композитів з використанням у 3 D друці. Огляд
dc.citation.epage | 159 | |
dc.citation.issue | 1 | |
dc.citation.spage | 147 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Левицький, В. Є. | |
dc.contributor.author | Масюк, А. С. | |
dc.contributor.author | Кечур, Д. І. | |
dc.contributor.author | Куліш, Б. І. | |
dc.contributor.author | Тараненко, Б. П. | |
dc.contributor.author | Levytskyi, V. Ye. | |
dc.contributor.author | Masyuk, A. S. | |
dc.contributor.author | Kechur, D. I. | |
dc.contributor.author | Kulish, B. I. | |
dc.contributor.author | Taranenko, B. P. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T09:22:49Z | |
dc.date.available | 2024-01-22T09:22:49Z | |
dc.date.created | 2020-02-21 | |
dc.date.issued | 2020-02-21 | |
dc.description.abstract | Проаналізовано найпоширеніші адитивні методи переробки полілактидних матеріалів. Звернено увагу на особливості методів селективного лазерного спікання, стереолітографії та моделювання методом пошарового наплавлення, а також на переваги і недоліки використання біодеградабельних матеріалів, зокрема полілактидних. Обґрунтовано підходи до розроблення композиційних матеріалів на основі полілактиду із додатками різної природи та їхні технологічні й експлуатаційні характеристики. | |
dc.description.abstract | The most common additive methods of processing polylactide materials are analyzed. Attention is paid to the features of methods of selective laser sintering, stereolithography and modeling by layer surfacing, as well as the advantages and disadvantages of using biodegradable materials, including polylactide. Approaches to the development of composite materials based on polylactide with additives of different nature and their technological and operational characteristics are substantiated. | |
dc.format.extent | 147-159 | |
dc.format.pages | 13 | |
dc.identifier.citation | Особливості переробки полілактидних композитів з використанням у 3 D друці. Огляд / В. Є. Левицький, А. С. Масюк, Д. І. Кечур, Б. І. Куліш, Б. П. Тараненко // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 147–159. | |
dc.identifier.citationen | Features of processing of polylactide composites with use in 3D printing. Review / V. Ye. Levytskyi, A. S. Masyuk, D. I. Kechur, B. I. Kulish, B. P. Taranenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 147–159. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.01.147 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60925 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (5), 2022 | |
dc.relation.references | 1. Lopes, M. S., Jardini, A. L., Filho, R. M. (2012). Poly(lactic acid) production for tissue engineering Applications, Procedia Eng., 42, 1402–1413. | |
dc.relation.references | 2. Syed, A. M. Tofail, Elias P. Koumoulos, Amit Bandyopadhyay, Susmita Bose, Lisa O’Donoghue, Costas Charitidis (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today, 21 (1), 22–37. https://doi.org/10.1016/j.mattod.2017.07.001. | |
dc.relation.references | 3. Bozkurt Yahya, Karayel Elif (2021). 3D printing technology; methods, biomedical applications, future opportunities and trends. Journal of Materials Research and Technology, 14, 1430–1450. https://doi.org/10.1016/j.jmrt.2021.07.050. | |
dc.relation.references | 4. Tuan, D. Ngo, Kashani, A., Imbalzano G., Kate, T. Q. Nguyen, D. H. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012. | |
dc.relation.references | 5. Gokuldoss, P. K.; Kolla, S.; Eckert, J. (2017). Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting – Selection Guidelines. Materials 10(6), 672. https://doi.org/10.3390/ma10060672. | |
dc.relation.references | 6. Shahrubudin, N., Lee, T. C., Ramlan, R. (2019). An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing, 35, 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089. | |
dc.relation.references | 7. Riya Singh, Akash Gupta, Ojestez Tripathi, Sashank Srivastava, Bharat Singh, Ankita Awasthi, S. K. Rajput, Pankaj Sonia, Piyush Singhal, Kuldeep K. Saxena (2020). Powder bed fusion process in additive manufacturing: An overview, Materials Today: Proceedings, 26(2), 3058–3070. https://doi.org/10.1016/j.matpr.2020.02.635. | |
dc.relation.references | 8. Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. (2021). A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 13, 598. https://doi.org/10.3390/ polym13040598. | |
dc.relation.references | 9. Haoyuan Quan, Ting Zhang, Hang Xu, Shen Luo, Jun Nie, Xiaoqun Zhu (2020) Photo-curing 3D printing technique and its challenges. Bioactive Materials, 5(1), 110–115. https://doi.org/10.1016/j.bioactmat.2019.12.003. | |
dc.relation.references | 10. Tuan Noraihan Azila Tuan Rahim, Abdul Manaf Abdullah & Hazizan Md Akil (2019) Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polymer Reviews, 59:4, 589–624. DOI: 10.1080/15583724.2019. 1597883. | |
dc.relation.references | 11. Mazurchevici, A. D.; Nedelcu, D.; Popa, R. (2020). Additive manufacturing of composite materials by FDM technology: A review. Indian J. Eng. Mater. Sci. 27, 179–192. http://op.niscair.res.in/index.php/IJEMS/article/view/45920 | |
dc.relation.references | 12. Vithani, K., Goyanes, A., Jannin, V. et al. (2019). An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharm Res., 36, 4. https://doi.org/10.1007/s11095-018-2531-1. | |
dc.relation.references | 13. Vithani, K., Goyanes, A., Jannin, V. (2019). An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharm Res., 36, 4. https://doi.org/10.1007/s11095-018-2531-1 | |
dc.relation.references | 14. Garlotta, D. A (2001). Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment, 9, 63–84. https://doi.org/10.1023/A:1020200822435. | |
dc.relation.references | 15. Madhavan Nampoothiri K., Nimisha Rajendran Nair, Rojan Pappy John (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092. | |
dc.relation.references | 16. Baran, Eda Hazal, and H. Yildirim Erbil (2019). Surface modification of 3D printed PLA objects by fused deposition modeling: a review. Colloids and interfaces, 3.2, 43. | |
dc.relation.references | 17. Rahul M. Rasal, Amol V. Janorkar, Douglas E. Hirt (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003. | |
dc.relation.references | 18. Groenendyk, M.; Gallant, R. (2013). 3D printing and scanning at the Dalhousie University Libraries: A pilot project. Libr. Hi Tech., 31, 34–41. | |
dc.relation.references | 19. M. Heidari-Rarani, M. Rafiee-Afarani, A. M. Zahedi (2019). Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites, Composites Part B: Engineering, 175, 107–147. https://doi.org/10.1016/j.compositesb.2019.107147. | |
dc.relation.references | 20. Estakhrianhaghighi, E. (2020). 3D-Printed Wood-Fiber Reinforced Architected Cellular Composites. Adv. Eng. Mater., 20, 2000565. | |
dc.relation.references | 21. Scaffaro, R. (2020). Lignocellulosic fillers and graphene nanoplatelets as hybrid reinforcement for polylactic acid: Effect on mechanical properties and degradability. Compos. Sci. Technol., 190, 108008. | |
dc.relation.references | 22. Ambone, T.; Torris, A.; Shanmuganathan, K. (2020). Enhancing the mechanical properties of 3D printed polylactic acid using nanocellulose. Polym. Eng. Sci., 60, 1842–1855. | |
dc.relation.references | 23. Antoniac, I.; Popescu, D.; Zapciu, A.; Antoniac, A.; Miculescu, F.; Moldovan, H. (2019). Magnesium Filled Polylactic Acid (PLA) Material for Filament Based 3D Printing. Materials, 12, 719. https://doi.org/10.3390/ma12050719. | |
dc.relation.references | 24. Ipek Bayraktar, Doga Doganay, Sahin Coskun, Cevdet Kaynak, Gulcin Akca, Husnu Emrah Unalan (2019). 3D printed antibacterial silver nanowire/polylactide nanocomposites, Composites Part B: Engineering, 172, 671–678. https://doi.org/10.1016/j.compositesb.2019.05.059. | |
dc.relation.references | 25. Tian, X. (2016). Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf., 88, 198–205. | |
dc.relation.references | 26. Rahimizadeh, A. (2019). Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing. Compos. Part B Eng., 175, 107101. | |
dc.relation.references | 27. Spinelli, G. (2018). Morphological, Rheological and Electromagnetic Properties of Nanocarbon/Poly(lactic) Acid for 3D Printing: Solution Blending vs. Melt Mixing. Materials, 11, 2256. | |
dc.relation.references | 28. Yang, L. (2019). Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process. Synth. Met., 253, 122–130. | |
dc.relation.references | 29. Zhou, X. (2021). Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties. J. Mater. Sci. Technol., 60, 27–34. | |
dc.relation.references | 30. Batakliev, T. (2019). Nanoindentation analysis of 3D printed poly (lactic acid)-based composites reinforced with graphene and multiwall carbon nanotubes. J. Appl. Polym. Sci., 136, 47260. | |
dc.relation.references | 31. Ivanov, E. (2019). PLA/Graphene/MWCNT composites with improved electrical and thermal properties suitable for FDM 3D printing applications. Appl. Sci., 9, 1209. | |
dc.relation.references | 32. Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L. (2018). 3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials, 11, 1947. https://doi.org/10.3390/ma11101947. | |
dc.relation.references | 33. Vidakis, N.; Petousis, M.; Velidakis, E.; Mountakis, N.; Tzounis, L.; Liebscher, M.; | |
dc.relation.references | 34. Wattanachai Prasong, Paritat Muanchan, Akira Ishigami, Supaphorn Thumsorn, Takashi Kurose, HiroshiIto (2020). Properties of 3D Printable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends and Nano Talc Composites. Journal of Nanomaterials, vol. 2020, 16. https://doi.org/10.1155/2020/8040517. | |
dc.relation.references | 35. Levytsʹkyy, V. Ye., Masyuk, A. S., Katruk, D. S., Boyko, M. V. (2021). Tekhnolohichni osoblyvosti oderzhannya ekstruziynykh vyrobiv z polilaktydu. Chemistry, Technology and Application of Substances, 4, 179. https://doi.org/10.23939/ctas2021.02.179. | |
dc.relation.references | 36. Masyuk, А. S., Levytskyi, V. E., Kysil, K. V., Bilyi, L. М., Humenetskyi, T. V. (2021). Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. Materials Science. 56(3), 870. https://doi.org/10.1007/s11003-021-00506-5 | |
dc.relation.references | 37. Masyuk, А. S., Kysil, Kh. V., Katruk, D. S., Skorokhoda, V. I., Bilyi, L. M. & Humenetskyi, Т. V. (2020). Elastoplastic Properties of Polylactide Composites with Finely Divided Fillers. Materials Science. 56 (4), 319. https://doi.org/10.1007/s11003-020-00432-y. | |
dc.relation.references | 38. Levytskyi, V., Katruk, D., Masyuk, A., Kysil, Kh., Bratychak, M. Jr., Chopyk, N. (2021). Resistance of Polylactide Materials to Water Mediums of the Various Natures. Chemistry&Chemical Technology. 15, 191. https://doi.org/10.23939/chcht15.02.191 | |
dc.relation.referencesen | 1. Lopes, M. S., Jardini, A. L., Filho, R. M. (2012). Poly(lactic acid) production for tissue engineering Applications, Procedia Eng., 42, 1402–1413. | |
dc.relation.referencesen | 2. Syed, A. M. Tofail, Elias P. Koumoulos, Amit Bandyopadhyay, Susmita Bose, Lisa O’Donoghue, Costas Charitidis (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today, 21 (1), 22–37. https://doi.org/10.1016/j.mattod.2017.07.001. | |
dc.relation.referencesen | 3. Bozkurt Yahya, Karayel Elif (2021). 3D printing technology; methods, biomedical applications, future opportunities and trends. Journal of Materials Research and Technology, 14, 1430–1450. https://doi.org/10.1016/j.jmrt.2021.07.050. | |
dc.relation.referencesen | 4. Tuan, D. Ngo, Kashani, A., Imbalzano G., Kate, T. Q. Nguyen, D. H. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012. | |
dc.relation.referencesen | 5. Gokuldoss, P. K.; Kolla, S.; Eckert, J. (2017). Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting – Selection Guidelines. Materials 10(6), 672. https://doi.org/10.3390/ma10060672. | |
dc.relation.referencesen | 6. Shahrubudin, N., Lee, T. C., Ramlan, R. (2019). An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing, 35, 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089. | |
dc.relation.referencesen | 7. Riya Singh, Akash Gupta, Ojestez Tripathi, Sashank Srivastava, Bharat Singh, Ankita Awasthi, S. K. Rajput, Pankaj Sonia, Piyush Singhal, Kuldeep K. Saxena (2020). Powder bed fusion process in additive manufacturing: An overview, Materials Today: Proceedings, 26(2), 3058–3070. https://doi.org/10.1016/j.matpr.2020.02.635. | |
dc.relation.referencesen | 8. Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. (2021). A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 13, 598. https://doi.org/10.3390/ polym13040598. | |
dc.relation.referencesen | 9. Haoyuan Quan, Ting Zhang, Hang Xu, Shen Luo, Jun Nie, Xiaoqun Zhu (2020) Photo-curing 3D printing technique and its challenges. Bioactive Materials, 5(1), 110–115. https://doi.org/10.1016/j.bioactmat.2019.12.003. | |
dc.relation.referencesen | 10. Tuan Noraihan Azila Tuan Rahim, Abdul Manaf Abdullah & Hazizan Md Akil (2019) Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polymer Reviews, 59:4, 589–624. DOI: 10.1080/15583724.2019. 1597883. | |
dc.relation.referencesen | 11. Mazurchevici, A. D.; Nedelcu, D.; Popa, R. (2020). Additive manufacturing of composite materials by FDM technology: A review. Indian J. Eng. Mater. Sci. 27, 179–192. http://op.niscair.res.in/index.php/IJEMS/article/view/45920 | |
dc.relation.referencesen | 12. Vithani, K., Goyanes, A., Jannin, V. et al. (2019). An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharm Res., 36, 4. https://doi.org/10.1007/s11095-018-2531-1. | |
dc.relation.referencesen | 13. Vithani, K., Goyanes, A., Jannin, V. (2019). An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharm Res., 36, 4. https://doi.org/10.1007/s11095-018-2531-1 | |
dc.relation.referencesen | 14. Garlotta, D. A (2001). Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment, 9, 63–84. https://doi.org/10.1023/A:1020200822435. | |
dc.relation.referencesen | 15. Madhavan Nampoothiri K., Nimisha Rajendran Nair, Rojan Pappy John (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092. | |
dc.relation.referencesen | 16. Baran, Eda Hazal, and H. Yildirim Erbil (2019). Surface modification of 3D printed PLA objects by fused deposition modeling: a review. Colloids and interfaces, 3.2, 43. | |
dc.relation.referencesen | 17. Rahul M. Rasal, Amol V. Janorkar, Douglas E. Hirt (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003. | |
dc.relation.referencesen | 18. Groenendyk, M.; Gallant, R. (2013). 3D printing and scanning at the Dalhousie University Libraries: A pilot project. Libr. Hi Tech., 31, 34–41. | |
dc.relation.referencesen | 19. M. Heidari-Rarani, M. Rafiee-Afarani, A. M. Zahedi (2019). Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites, Composites Part B: Engineering, 175, 107–147. https://doi.org/10.1016/j.compositesb.2019.107147. | |
dc.relation.referencesen | 20. Estakhrianhaghighi, E. (2020). 3D-Printed Wood-Fiber Reinforced Architected Cellular Composites. Adv. Eng. Mater., 20, 2000565. | |
dc.relation.referencesen | 21. Scaffaro, R. (2020). Lignocellulosic fillers and graphene nanoplatelets as hybrid reinforcement for polylactic acid: Effect on mechanical properties and degradability. Compos. Sci. Technol., 190, 108008. | |
dc.relation.referencesen | 22. Ambone, T.; Torris, A.; Shanmuganathan, K. (2020). Enhancing the mechanical properties of 3D printed polylactic acid using nanocellulose. Polym. Eng. Sci., 60, 1842–1855. | |
dc.relation.referencesen | 23. Antoniac, I.; Popescu, D.; Zapciu, A.; Antoniac, A.; Miculescu, F.; Moldovan, H. (2019). Magnesium Filled Polylactic Acid (PLA) Material for Filament Based 3D Printing. Materials, 12, 719. https://doi.org/10.3390/ma12050719. | |
dc.relation.referencesen | 24. Ipek Bayraktar, Doga Doganay, Sahin Coskun, Cevdet Kaynak, Gulcin Akca, Husnu Emrah Unalan (2019). 3D printed antibacterial silver nanowire/polylactide nanocomposites, Composites Part B: Engineering, 172, 671–678. https://doi.org/10.1016/j.compositesb.2019.05.059. | |
dc.relation.referencesen | 25. Tian, X. (2016). Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf., 88, 198–205. | |
dc.relation.referencesen | 26. Rahimizadeh, A. (2019). Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing. Compos. Part B Eng., 175, 107101. | |
dc.relation.referencesen | 27. Spinelli, G. (2018). Morphological, Rheological and Electromagnetic Properties of Nanocarbon/Poly(lactic) Acid for 3D Printing: Solution Blending vs. Melt Mixing. Materials, 11, 2256. | |
dc.relation.referencesen | 28. Yang, L. (2019). Effects of carbon nanotube on the thermal, mechanical, and electrical properties of PLA/CNT printed parts in the FDM process. Synth. Met., 253, 122–130. | |
dc.relation.referencesen | 29. Zhou, X. (2021). Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties. J. Mater. Sci. Technol., 60, 27–34. | |
dc.relation.referencesen | 30. Batakliev, T. (2019). Nanoindentation analysis of 3D printed poly (lactic acid)-based composites reinforced with graphene and multiwall carbon nanotubes. J. Appl. Polym. Sci., 136, 47260. | |
dc.relation.referencesen | 31. Ivanov, E. (2019). PLA/Graphene/MWCNT composites with improved electrical and thermal properties suitable for FDM 3D printing applications. Appl. Sci., 9, 1209. | |
dc.relation.referencesen | 32. Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L. (2018). 3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials, 11, 1947. https://doi.org/10.3390/ma11101947. | |
dc.relation.referencesen | 33. Vidakis, N.; Petousis, M.; Velidakis, E.; Mountakis, N.; Tzounis, L.; Liebscher, M.; | |
dc.relation.referencesen | 34. Wattanachai Prasong, Paritat Muanchan, Akira Ishigami, Supaphorn Thumsorn, Takashi Kurose, HiroshiIto (2020). Properties of 3D Printable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends and Nano Talc Composites. Journal of Nanomaterials, vol. 2020, 16. https://doi.org/10.1155/2020/8040517. | |
dc.relation.referencesen | 35. Levytsʹkyy, V. Ye., Masyuk, A. S., Katruk, D. S., Boyko, M. V. (2021). Tekhnolohichni osoblyvosti oderzhannya ekstruziynykh vyrobiv z polilaktydu. Chemistry, Technology and Application of Substances, 4, 179. https://doi.org/10.23939/ctas2021.02.179. | |
dc.relation.referencesen | 36. Masyuk, A. S., Levytskyi, V. E., Kysil, K. V., Bilyi, L. M., Humenetskyi, T. V. (2021). Influence of Calcium Phosphates on the Morphology and Properties of Polylactide Composites. Materials Science. 56(3), 870. https://doi.org/10.1007/s11003-021-00506-5 | |
dc.relation.referencesen | 37. Masyuk, A. S., Kysil, Kh. V., Katruk, D. S., Skorokhoda, V. I., Bilyi, L. M. & Humenetskyi, T. V. (2020). Elastoplastic Properties of Polylactide Composites with Finely Divided Fillers. Materials Science. 56 (4), 319. https://doi.org/10.1007/s11003-020-00432-y. | |
dc.relation.referencesen | 38. Levytskyi, V., Katruk, D., Masyuk, A., Kysil, Kh., Bratychak, M. Jr., Chopyk, N. (2021). Resistance of Polylactide Materials to Water Mediums of the Various Natures. Chemistry&Chemical Technology. 15, 191. https://doi.org/10.23939/chcht15.02.191 | |
dc.relation.uri | https://doi.org/10.1016/j.mattod.2017.07.001 | |
dc.relation.uri | https://doi.org/10.1016/j.jmrt.2021.07.050 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesb.2018.02.012 | |
dc.relation.uri | https://doi.org/10.3390/ma10060672 | |
dc.relation.uri | https://doi.org/10.1016/j.promfg.2019.06.089 | |
dc.relation.uri | https://doi.org/10.1016/j.matpr.2020.02.635 | |
dc.relation.uri | https://doi.org/10.3390/ | |
dc.relation.uri | https://doi.org/10.1016/j.bioactmat.2019.12.003 | |
dc.relation.uri | http://op.niscair.res.in/index.php/IJEMS/article/view/45920 | |
dc.relation.uri | https://doi.org/10.1007/s11095-018-2531-1 | |
dc.relation.uri | https://doi.org/10.1023/A:1020200822435 | |
dc.relation.uri | https://doi.org/10.1016/j.biortech.2010.05.092 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2009.12.003 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesb.2019.107147 | |
dc.relation.uri | https://doi.org/10.3390/ma12050719 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesb.2019.05.059 | |
dc.relation.uri | https://doi.org/10.3390/ma11101947 | |
dc.relation.uri | https://doi.org/10.1155/2020/8040517 | |
dc.relation.uri | https://doi.org/10.23939/ctas2021.02.179 | |
dc.relation.uri | https://doi.org/10.1007/s11003-021-00506-5 | |
dc.relation.uri | https://doi.org/10.1007/s11003-020-00432-y | |
dc.relation.uri | https://doi.org/10.23939/chcht15.02.191 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | полілактид | |
dc.subject | 3D друк | |
dc.subject | адитивне виробництво | |
dc.subject | біодеградабельні композити | |
dc.subject | polylactide | |
dc.subject | 3D printing | |
dc.subject | additive production | |
dc.subject | biodegradable composites | |
dc.title | Особливості переробки полілактидних композитів з використанням у 3 D друці. Огляд | |
dc.title.alternative | Features of processing of polylactide composites with use in 3D printing. Review | |
dc.type | Article |
Files
License bundle
1 - 1 of 1