Peculiarities of metallization of polyvinyl chloride granules

dc.citation.epage178
dc.citation.issue2
dc.citation.spage173
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКучеренко, А.
dc.contributor.authorНікітчук, О.
dc.contributor.authorКузнецова, М.
dc.contributor.authorМоравський, В.
dc.contributor.authorKucherenko, A.
dc.contributor.authorNikitchuk, O.
dc.contributor.authorKuznetsova, M.
dc.contributor.authorMoravskyi, V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:47:13Z
dc.date.available2024-01-22T08:47:13Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractНаведено результати експериментальних досліджень міднення гранул полівінілхлориду в розчині хімічного осадження. Досліджено вплив площі поверхні гранул полівінілхлориду на кінетичні закономірності відновлення міді і вміст міді на металізованих гранулах. Встановлено, що площа поверхні гранул полівінілхлориду має значний вплив на швидкість відновлення іонів міді і ніяк не впливає на кількість відновленої міді. Розраховано товщину шару одержаної мідної оболонки на гранулах полівінілхлориду різного розміру залежно від вмісту металу.
dc.description.abstractThe results of experimental studies of copper plating of polyvinyl chloride granules in a chemical precipitation solution are presented. The influence of the surface area of polyvinyl chloride granules on the kinetic regularities of copper reduction and the copper content on metallized granules has been studied. It is established that the surface area of polyvinyl chloride granules has a significant effect on the rate of reduction of copper ions and does not affect the amount of reduced copper. The thickness of the layer of the obtained copper shell on polyvinyl chloride granules of different sizes depending on the metal content is calculated.
dc.format.extent173-178
dc.format.pages6
dc.identifier.citationPeculiarities of metallization of polyvinyl chloride granules / A. Kucherenko, O. Nikitchuk, M. Kuznetsova, V. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 173–178.
dc.identifier.citationenPeculiarities of metallization of polyvinyl chloride granules / A. Kucherenko, O. Nikitchuk, M. Kuznetsova, V. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 173–178.
dc.identifier.doidoi.org/10.23939/ctas2021.02.173
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60894
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (4), 2021
dc.relation.references1. Wang L., Qiu H., Liang C. B., Song P., Han Y. X., Han Y. X., … Guo Z. H. (2019). Electromagnetic interference shielding MWCNT-Fe3O4Ag/ epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon, 141, 506–514. doi.org/10.1016/j.carbon.2018.10.003
dc.relation.references2. Liu C., Wang L., Liu S., Tong L., Liu X. (2020). Fabrication strategies of polymer-based electromagnetic interference shielding materials. Advanced Industrial and Engineering Polymer Research, 3(4), 149–159. doi:10.1016/j.aiepr.2020.10.002
dc.relation.references3. Burk L., Gliem M., Lais F., Nutz F., Retsch M., Mülhaupt R. (2018). Mechanochemically Carboxylated Multilayer Graphene for Carbon/ABS Composites with Improved Thermal Conductivity. Polymers, 10(10), 1088. https://doi.org/10.3390/polym10101088
dc.relation.references4. You J., Kim J.-H., Seo K. H., Huh W., Park J. H., Lee S. S. (2018). Implication of controlled embedment of graphite nanoplatelets assisted by mechanochemical treatment for electro-conductive polyketone composite. J. Ind. Eng. Chem., 66, 356–361. doi.org/10.1016/j.jiec. 2018.06.001
dc.relation.references5. You J., Choi H. H., Cho J., Son J. G., Park M., Lee S. S., Park J. H. (2018). Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment. Composites Science and Technology, 160, 245–254. https://doi.org/10.1016/j.compscitech.2018.03.021
dc.relation.references6. Ren L., Zeng X., Sun R., Xu J. B., Wong C. P. (2019). Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem. Eng. J., 370, 166–175. doi.org/10.1016/j.cej.2019.03.217
dc.relation.references7. Sohn Y., Han T., Han J. H. (2019). Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coeffcient of thermal expansion of graphite/copper composites. Carbon, 149, 152–164. doi.org/10.1016/j.carbon.2019.04.055
dc.relation.references8. Moradi S., Calventus Y., Román F., Hutchinson J. M. (2019). Achieving High Thermal Conductivity in Epoxy Composites: Effect of Boron Nitride Particle Size and Matrix-Filler Interface. Polymers, 11, 1156. https://doi.org/10.3390/polym11071156
dc.relation.references9. Zhou W., Zuo J., Ren W. (2012). Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. Part A Appl. Sci. Manuf., 43(4), 658–664. doi.org/10.1016/j.compositesa.2011.11.024
dc.relation.references10. Grytsenko O., Gajdoš I., Spišák E., Krasinskyi V., Suberlyak O. (2019). Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties. Materials, 12(12), 1956. https://doi.org/10.3390/ma12121956
dc.relation.references11. Navarro L., Barreneche C., Castell A., Redpath D. A. G., Griffiths P. W., Cabeza L. F. (2017). High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. J. Energy Storage, 13, 262–267, https://doi.org/10.1016/j.est.2017.07.025
dc.relation.references12. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E. Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials. 13, 2856. doi.org/10.3390/ma13122856
dc.relation.references13. Moravskyi V., Dziaman I., Suberliak S., Kuznetsova М., Tsimbalista Т., Dulebova L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 4/12 (88), 50–57. doi.org/10.15587/1729-4061.2017.108462
dc.relation.references14. Moravskyi V., Kucherenko А., Kuznetsova М., Dziaman I., Grytsenko О., Dulebova L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 3/12(93), 40-47. doi: 10.15587/1729-4061.2018.131446
dc.relation.references15. Kobyliukh A., Olszowska K., Szeluga U., Pusz S. (2020). Iron oxides/graphene hybrid structures – Preparation, modification, and application as fillers of polymer composites. Advances in Colloid and Interface Science, 285, 102285. doi.org/10.1016/j.cis.2020.102285.
dc.relation.references16. Guo Y., Ruan K., Shi X., Yang X., Gu J. (2020). Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 193, 108134. doi:10.1016/j.compscitech.2020.108134
dc.relation.references17. Kucherenko А. N., Mankevych S. О., Kuznetsova М. Ya., Moravskyi V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3(2), 140–145. doi.org/10.23939/ctas2020.02.140
dc.relation.referencesen1. Wang L., Qiu H., Liang C. B., Song P., Han Y. X., Han Y. X., … Guo Z. H. (2019). Electromagnetic interference shielding MWCNT-Fe3O4Ag/ epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon, 141, 506–514. doi.org/10.1016/j.carbon.2018.10.003
dc.relation.referencesen2. Liu C., Wang L., Liu S., Tong L., Liu X. (2020). Fabrication strategies of polymer-based electromagnetic interference shielding materials. Advanced Industrial and Engineering Polymer Research, 3(4), 149–159. doi:10.1016/j.aiepr.2020.10.002
dc.relation.referencesen3. Burk L., Gliem M., Lais F., Nutz F., Retsch M., Mülhaupt R. (2018). Mechanochemically Carboxylated Multilayer Graphene for Carbon/ABS Composites with Improved Thermal Conductivity. Polymers, 10(10), 1088. https://doi.org/10.3390/polym10101088
dc.relation.referencesen4. You J., Kim J.-H., Seo K. H., Huh W., Park J. H., Lee S. S. (2018). Implication of controlled embedment of graphite nanoplatelets assisted by mechanochemical treatment for electro-conductive polyketone composite. J. Ind. Eng. Chem., 66, 356–361. doi.org/10.1016/j.jiec. 2018.06.001
dc.relation.referencesen5. You J., Choi H. H., Cho J., Son J. G., Park M., Lee S. S., Park J. H. (2018). Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment. Composites Science and Technology, 160, 245–254. https://doi.org/10.1016/j.compscitech.2018.03.021
dc.relation.referencesen6. Ren L., Zeng X., Sun R., Xu J. B., Wong C. P. (2019). Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem. Eng. J., 370, 166–175. doi.org/10.1016/j.cej.2019.03.217
dc.relation.referencesen7. Sohn Y., Han T., Han J. H. (2019). Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coeffcient of thermal expansion of graphite/copper composites. Carbon, 149, 152–164. doi.org/10.1016/j.carbon.2019.04.055
dc.relation.referencesen8. Moradi S., Calventus Y., Román F., Hutchinson J. M. (2019). Achieving High Thermal Conductivity in Epoxy Composites: Effect of Boron Nitride Particle Size and Matrix-Filler Interface. Polymers, 11, 1156. https://doi.org/10.3390/polym11071156
dc.relation.referencesen9. Zhou W., Zuo J., Ren W. (2012). Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. Part A Appl. Sci. Manuf., 43(4), 658–664. doi.org/10.1016/j.compositesa.2011.11.024
dc.relation.referencesen10. Grytsenko O., Gajdoš I., Spišák E., Krasinskyi V., Suberlyak O. (2019). Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties. Materials, 12(12), 1956. https://doi.org/10.3390/ma12121956
dc.relation.referencesen11. Navarro L., Barreneche C., Castell A., Redpath D. A. G., Griffiths P. W., Cabeza L. F. (2017). High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. J. Energy Storage, 13, 262–267, https://doi.org/10.1016/j.est.2017.07.025
dc.relation.referencesen12. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E. Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials. 13, 2856. doi.org/10.3390/ma13122856
dc.relation.referencesen13. Moravskyi V., Dziaman I., Suberliak S., Kuznetsova M., Tsimbalista T., Dulebova L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 4/12 (88), 50–57. doi.org/10.15587/1729-4061.2017.108462
dc.relation.referencesen14. Moravskyi V., Kucherenko A., Kuznetsova M., Dziaman I., Grytsenko O., Dulebova L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 3/12(93), 40-47. doi: 10.15587/1729-4061.2018.131446
dc.relation.referencesen15. Kobyliukh A., Olszowska K., Szeluga U., Pusz S. (2020). Iron oxides/graphene hybrid structures – Preparation, modification, and application as fillers of polymer composites. Advances in Colloid and Interface Science, 285, 102285. doi.org/10.1016/j.cis.2020.102285.
dc.relation.referencesen16. Guo Y., Ruan K., Shi X., Yang X., Gu J. (2020). Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 193, 108134. doi:10.1016/j.compscitech.2020.108134
dc.relation.referencesen17. Kucherenko A. N., Mankevych S. O., Kuznetsova M. Ya., Moravskyi V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3(2), 140–145. doi.org/10.23939/ctas2020.02.140
dc.relation.urihttps://doi.org/10.3390/polym10101088
dc.relation.urihttps://doi.org/10.1016/j.compscitech.2018.03.021
dc.relation.urihttps://doi.org/10.3390/polym11071156
dc.relation.urihttps://doi.org/10.3390/ma12121956
dc.relation.urihttps://doi.org/10.1016/j.est.2017.07.025
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectполівінілхлорид
dc.subjectгранули
dc.subjectхімічна металізація
dc.subjectмідь
dc.subjectоболонка
dc.subjectpolyvinyl chloride
dc.subjectgranules
dc.subjectchemical metallization
dc.subjectcopper
dc.subjectshell
dc.titlePeculiarities of metallization of polyvinyl chloride granules
dc.title.alternativeОсобливості металізації гранул полівінілхлориду
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n2_Kucherenko_A-Peculiarities_of_metallization_173-178.pdf
Size:
408.19 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n2_Kucherenko_A-Peculiarities_of_metallization_173-178__COVER.png
Size:
494.33 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: