Peculiarities of metallization of polyvinyl chloride granules
dc.citation.epage | 178 | |
dc.citation.issue | 2 | |
dc.citation.spage | 173 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кучеренко, А. | |
dc.contributor.author | Нікітчук, О. | |
dc.contributor.author | Кузнецова, М. | |
dc.contributor.author | Моравський, В. | |
dc.contributor.author | Kucherenko, A. | |
dc.contributor.author | Nikitchuk, O. | |
dc.contributor.author | Kuznetsova, M. | |
dc.contributor.author | Moravskyi, V. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:47:13Z | |
dc.date.available | 2024-01-22T08:47:13Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Наведено результати експериментальних досліджень міднення гранул полівінілхлориду в розчині хімічного осадження. Досліджено вплив площі поверхні гранул полівінілхлориду на кінетичні закономірності відновлення міді і вміст міді на металізованих гранулах. Встановлено, що площа поверхні гранул полівінілхлориду має значний вплив на швидкість відновлення іонів міді і ніяк не впливає на кількість відновленої міді. Розраховано товщину шару одержаної мідної оболонки на гранулах полівінілхлориду різного розміру залежно від вмісту металу. | |
dc.description.abstract | The results of experimental studies of copper plating of polyvinyl chloride granules in a chemical precipitation solution are presented. The influence of the surface area of polyvinyl chloride granules on the kinetic regularities of copper reduction and the copper content on metallized granules has been studied. It is established that the surface area of polyvinyl chloride granules has a significant effect on the rate of reduction of copper ions and does not affect the amount of reduced copper. The thickness of the layer of the obtained copper shell on polyvinyl chloride granules of different sizes depending on the metal content is calculated. | |
dc.format.extent | 173-178 | |
dc.format.pages | 6 | |
dc.identifier.citation | Peculiarities of metallization of polyvinyl chloride granules / A. Kucherenko, O. Nikitchuk, M. Kuznetsova, V. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 173–178. | |
dc.identifier.citationen | Peculiarities of metallization of polyvinyl chloride granules / A. Kucherenko, O. Nikitchuk, M. Kuznetsova, V. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 173–178. | |
dc.identifier.doi | doi.org/10.23939/ctas2021.02.173 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60894 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (4), 2021 | |
dc.relation.references | 1. Wang L., Qiu H., Liang C. B., Song P., Han Y. X., Han Y. X., … Guo Z. H. (2019). Electromagnetic interference shielding MWCNT-Fe3O4Ag/ epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon, 141, 506–514. doi.org/10.1016/j.carbon.2018.10.003 | |
dc.relation.references | 2. Liu C., Wang L., Liu S., Tong L., Liu X. (2020). Fabrication strategies of polymer-based electromagnetic interference shielding materials. Advanced Industrial and Engineering Polymer Research, 3(4), 149–159. doi:10.1016/j.aiepr.2020.10.002 | |
dc.relation.references | 3. Burk L., Gliem M., Lais F., Nutz F., Retsch M., Mülhaupt R. (2018). Mechanochemically Carboxylated Multilayer Graphene for Carbon/ABS Composites with Improved Thermal Conductivity. Polymers, 10(10), 1088. https://doi.org/10.3390/polym10101088 | |
dc.relation.references | 4. You J., Kim J.-H., Seo K. H., Huh W., Park J. H., Lee S. S. (2018). Implication of controlled embedment of graphite nanoplatelets assisted by mechanochemical treatment for electro-conductive polyketone composite. J. Ind. Eng. Chem., 66, 356–361. doi.org/10.1016/j.jiec. 2018.06.001 | |
dc.relation.references | 5. You J., Choi H. H., Cho J., Son J. G., Park M., Lee S. S., Park J. H. (2018). Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment. Composites Science and Technology, 160, 245–254. https://doi.org/10.1016/j.compscitech.2018.03.021 | |
dc.relation.references | 6. Ren L., Zeng X., Sun R., Xu J. B., Wong C. P. (2019). Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem. Eng. J., 370, 166–175. doi.org/10.1016/j.cej.2019.03.217 | |
dc.relation.references | 7. Sohn Y., Han T., Han J. H. (2019). Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coeffcient of thermal expansion of graphite/copper composites. Carbon, 149, 152–164. doi.org/10.1016/j.carbon.2019.04.055 | |
dc.relation.references | 8. Moradi S., Calventus Y., Román F., Hutchinson J. M. (2019). Achieving High Thermal Conductivity in Epoxy Composites: Effect of Boron Nitride Particle Size and Matrix-Filler Interface. Polymers, 11, 1156. https://doi.org/10.3390/polym11071156 | |
dc.relation.references | 9. Zhou W., Zuo J., Ren W. (2012). Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. Part A Appl. Sci. Manuf., 43(4), 658–664. doi.org/10.1016/j.compositesa.2011.11.024 | |
dc.relation.references | 10. Grytsenko O., Gajdoš I., Spišák E., Krasinskyi V., Suberlyak O. (2019). Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties. Materials, 12(12), 1956. https://doi.org/10.3390/ma12121956 | |
dc.relation.references | 11. Navarro L., Barreneche C., Castell A., Redpath D. A. G., Griffiths P. W., Cabeza L. F. (2017). High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. J. Energy Storage, 13, 262–267, https://doi.org/10.1016/j.est.2017.07.025 | |
dc.relation.references | 12. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E. Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials. 13, 2856. doi.org/10.3390/ma13122856 | |
dc.relation.references | 13. Moravskyi V., Dziaman I., Suberliak S., Kuznetsova М., Tsimbalista Т., Dulebova L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 4/12 (88), 50–57. doi.org/10.15587/1729-4061.2017.108462 | |
dc.relation.references | 14. Moravskyi V., Kucherenko А., Kuznetsova М., Dziaman I., Grytsenko О., Dulebova L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 3/12(93), 40-47. doi: 10.15587/1729-4061.2018.131446 | |
dc.relation.references | 15. Kobyliukh A., Olszowska K., Szeluga U., Pusz S. (2020). Iron oxides/graphene hybrid structures – Preparation, modification, and application as fillers of polymer composites. Advances in Colloid and Interface Science, 285, 102285. doi.org/10.1016/j.cis.2020.102285. | |
dc.relation.references | 16. Guo Y., Ruan K., Shi X., Yang X., Gu J. (2020). Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 193, 108134. doi:10.1016/j.compscitech.2020.108134 | |
dc.relation.references | 17. Kucherenko А. N., Mankevych S. О., Kuznetsova М. Ya., Moravskyi V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3(2), 140–145. doi.org/10.23939/ctas2020.02.140 | |
dc.relation.referencesen | 1. Wang L., Qiu H., Liang C. B., Song P., Han Y. X., Han Y. X., … Guo Z. H. (2019). Electromagnetic interference shielding MWCNT-Fe3O4Ag/ epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon, 141, 506–514. doi.org/10.1016/j.carbon.2018.10.003 | |
dc.relation.referencesen | 2. Liu C., Wang L., Liu S., Tong L., Liu X. (2020). Fabrication strategies of polymer-based electromagnetic interference shielding materials. Advanced Industrial and Engineering Polymer Research, 3(4), 149–159. doi:10.1016/j.aiepr.2020.10.002 | |
dc.relation.referencesen | 3. Burk L., Gliem M., Lais F., Nutz F., Retsch M., Mülhaupt R. (2018). Mechanochemically Carboxylated Multilayer Graphene for Carbon/ABS Composites with Improved Thermal Conductivity. Polymers, 10(10), 1088. https://doi.org/10.3390/polym10101088 | |
dc.relation.referencesen | 4. You J., Kim J.-H., Seo K. H., Huh W., Park J. H., Lee S. S. (2018). Implication of controlled embedment of graphite nanoplatelets assisted by mechanochemical treatment for electro-conductive polyketone composite. J. Ind. Eng. Chem., 66, 356–361. doi.org/10.1016/j.jiec. 2018.06.001 | |
dc.relation.referencesen | 5. You J., Choi H. H., Cho J., Son J. G., Park M., Lee S. S., Park J. H. (2018). Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via mechanochemical bonding techniques with plasma treatment. Composites Science and Technology, 160, 245–254. https://doi.org/10.1016/j.compscitech.2018.03.021 | |
dc.relation.referencesen | 6. Ren L., Zeng X., Sun R., Xu J. B., Wong C. P. (2019). Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem. Eng. J., 370, 166–175. doi.org/10.1016/j.cej.2019.03.217 | |
dc.relation.referencesen | 7. Sohn Y., Han T., Han J. H. (2019). Effects of shape and alignment of reinforcing graphite phases on the thermal conductivity and the coeffcient of thermal expansion of graphite/copper composites. Carbon, 149, 152–164. doi.org/10.1016/j.carbon.2019.04.055 | |
dc.relation.referencesen | 8. Moradi S., Calventus Y., Román F., Hutchinson J. M. (2019). Achieving High Thermal Conductivity in Epoxy Composites: Effect of Boron Nitride Particle Size and Matrix-Filler Interface. Polymers, 11, 1156. https://doi.org/10.3390/polym11071156 | |
dc.relation.referencesen | 9. Zhou W., Zuo J., Ren W. (2012). Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. Part A Appl. Sci. Manuf., 43(4), 658–664. doi.org/10.1016/j.compositesa.2011.11.024 | |
dc.relation.referencesen | 10. Grytsenko O., Gajdoš I., Spišák E., Krasinskyi V., Suberlyak O. (2019). Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties. Materials, 12(12), 1956. https://doi.org/10.3390/ma12121956 | |
dc.relation.referencesen | 11. Navarro L., Barreneche C., Castell A., Redpath D. A. G., Griffiths P. W., Cabeza L. F. (2017). High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. J. Energy Storage, 13, 262–267, https://doi.org/10.1016/j.est.2017.07.025 | |
dc.relation.referencesen | 12. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E. Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials. 13, 2856. doi.org/10.3390/ma13122856 | |
dc.relation.referencesen | 13. Moravskyi V., Dziaman I., Suberliak S., Kuznetsova M., Tsimbalista T., Dulebova L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 4/12 (88), 50–57. doi.org/10.15587/1729-4061.2017.108462 | |
dc.relation.referencesen | 14. Moravskyi V., Kucherenko A., Kuznetsova M., Dziaman I., Grytsenko O., Dulebova L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 3/12(93), 40-47. doi: 10.15587/1729-4061.2018.131446 | |
dc.relation.referencesen | 15. Kobyliukh A., Olszowska K., Szeluga U., Pusz S. (2020). Iron oxides/graphene hybrid structures – Preparation, modification, and application as fillers of polymer composites. Advances in Colloid and Interface Science, 285, 102285. doi.org/10.1016/j.cis.2020.102285. | |
dc.relation.referencesen | 16. Guo Y., Ruan K., Shi X., Yang X., Gu J. (2020). Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 193, 108134. doi:10.1016/j.compscitech.2020.108134 | |
dc.relation.referencesen | 17. Kucherenko A. N., Mankevych S. O., Kuznetsova M. Ya., Moravskyi V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3(2), 140–145. doi.org/10.23939/ctas2020.02.140 | |
dc.relation.uri | https://doi.org/10.3390/polym10101088 | |
dc.relation.uri | https://doi.org/10.1016/j.compscitech.2018.03.021 | |
dc.relation.uri | https://doi.org/10.3390/polym11071156 | |
dc.relation.uri | https://doi.org/10.3390/ma12121956 | |
dc.relation.uri | https://doi.org/10.1016/j.est.2017.07.025 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | полівінілхлорид | |
dc.subject | гранули | |
dc.subject | хімічна металізація | |
dc.subject | мідь | |
dc.subject | оболонка | |
dc.subject | polyvinyl chloride | |
dc.subject | granules | |
dc.subject | chemical metallization | |
dc.subject | copper | |
dc.subject | shell | |
dc.title | Peculiarities of metallization of polyvinyl chloride granules | |
dc.title.alternative | Особливості металізації гранул полівінілхлориду | |
dc.type | Article |
Files
License bundle
1 - 1 of 1