Designing and simulation of an enhanced screw-type press for vegetable oil production

dc.citation.epage136
dc.citation.issue1
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика.
dc.citation.spage128
dc.citation.volume5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКачур, Олександр
dc.contributor.authorКорендій, Віталій Михайлович
dc.contributor.authorГавран, Володимир
dc.contributor.authorKachur, Oleksandr
dc.contributor.authorKorendiy, Vitaliy
dc.contributor.authorHavran, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-23T06:35:24Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПостановка проблеми. За останні десятиліття значно зросло виробництво олійних культур і продуктів їх переробки. Рослинні олії виробляють в основному пресуванням масловмісної сировини на шнекових пресах. Під час роботи преса необхідно адаптувати режими його роботи до насіння окремих культур із забезпеченням можливості коригування певних параметрів роботи, які задані технологічно. призначення. Основна мета даного дослідження полягає в аналізі конструктивних особливостей удосконаленого шнекового преса для віджиму олії з різних олійних культур та олійної сировини. Крім того, поставлена мета аналізу гвинта на напруги та деформації. Методологія. Метод скінченних елементів, інтегрований у програмне забезпечення SolidWorks, використовується для аналізу напруженодеформованого стану натискного гвинта при найважчих умовах навантаження. Результати. Отримані результати представлені у вигляді розподілу напружень і деформацій вздовж валу шнека та муфт. Відповідні тривимірні та двомірні діаграми напруження-деформації будуються та ретельно аналізуються. Оригінальність. Визначено зони перевантаження шнека та розглянуто можливості забезпечення надійності та довговічності шнека. Практична цінність. Запропонована конструкція шнекового преса може бути реалізована на практиці для виконання операцій пресування при віджимі олії з різних олійних культур і олійної сировини. Результати випробувань напружено-деформованого стану гвинта можуть бути використані для прогнозування надійності та довговічності гвинта на етапі його проектування. Обсяги подальших досліджень. Подальші дослідження за темою цього дослідження можуть бути зосереджені на виведенні математичної моделі, що описує умови сили та тиску, що прикладаються до гвинтового валу та муфт.
dc.description.abstractProblem statement. The production of oil crops and products of their processing has significantly increased in recent decades. Vegetable oils are mainly produced by pressing oilcontaining raw materials using screw-type presses. During the press operation, there is a need to adapt its working regimes to the seeds of individual crops while ensuring the possibility of adjusting certain operation parameters that are set technologically. Purpose. The main purpose of the present research consists in analyzing the design peculiarities of the enhanced screw-type press for extracting oil from different oil crops and oil-containing raw materials. In addition, there is set a goal of analyzing the screw for stresses and strains. Methodology. The finite-element method integrated into the SolidWorks software is used for analyzing the stress-strain state of the pressing screw at the hardest loading conditions. Results. The obtained results are presented in the form of the stresses and strain distribution along the screw shaft and flights. The corresponding 3D and 2D stress-strain diagrams are plotted and thoroughly analyzed. Originality. The zones of the screw overloading are defined and the possibilities of providing the screw reliability and durability are considered. Practical value. The proposed design of the screw-type press can be implemented in practice for performing pressing operations while extracting oil from different oil crops and oil-containing raw materials. The results of testing the screw stress-strain state can be used for predicting the screw reliability and durability at the stage of its designing. Scopes of further investigations. Further investigations on the topic of the present research can be focused on deriving the mathematical model describing the force and pressure conditions applied to the screw shaft and flights.
dc.format.extent128-136
dc.format.pages9
dc.identifier.citationKachur O. Designing and simulation of an enhanced screw-type press for vegetable oil production / Oleksandr Kachur, Vitaliy Korendiy, Volodymyr Havran // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 128–136.
dc.identifier.citationenKachur O. Designing and simulation of an enhanced screw-type press for vegetable oil production / Oleksandr Kachur, Vitaliy Korendiy, Volodymyr Havran // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 128–136.
dc.identifier.doidoi.org/10.23939/cds2023.01.128
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111487
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика., 1 (5), 2023
dc.relation.ispartofComputer Design Systems. Theory and Practice, 1 (5), 2023
dc.relation.references1. R. Ortiz et al., “Oil crops for the future,” Current Opinion in Plant Biology, vol. 56, pp. 181–189, Aug. 2020. https://doi.org/10.1016/j.pbi.2019.12.003
dc.relation.references2. G. C. Brêda et al., “Current approaches to use oil crops by-products for biodiesel and biolubricant production: Focus on biocatalysis,” Bioresource Technology Reports, vol. 18, p. 101030, Jun. 2022. https://doi.org/10.1016/j.biteb.2022.101030
dc.relation.references3. T. S. Brand, J. H. . Van Zyl, and O. Dreyer, “The effect of formaldehyde treatment of canola oilcake meal and sweet lupins on the in situ dry matter and crude protein digestibility,” South African Journal of Animal Science, vol. 53, no. 1, pp. 91–100, Apr. 2023. https://doi.org/10.4314/sajas.v53i1.10
dc.relation.references4. A. Petraru and S. Amariei, “Sunflower oilcake as a potential source for the development of edible membranes,” Membranes (Basel), vol. 12, no. 8, p. 789, Aug. 2022. https://doi.org/10.3390/membranes12080789
dc.relation.references5. A. Petraru and S. Amariei, “A novel approach about edible packaging materials based on oilcakes - A review,” Polymers (Basel), vol. 15, no. 16, p. 3431, Aug. 2023. https://doi.org/10.3390/polym15163431
dc.relation.references6. E. Afkhami Sarai, S. Azadmard-Damirchi, and M. Gharekhani, “Oil extraction from black cumin seeds incorporated with rosemary leaf by cold screw press and evaluation of some of its qualitative properties,” Food Science and Technology, vol. 18, no. 113, pp. 225–232, Jul. 2021. https://doi.org/10.52547/fsct.18.113.225
dc.relation.references7. M. M. K. Bhuiya, M. Rasul, M. Khan, N. Ashwath, and M. Mofijur, “Comparison of oil extraction between screw press and solvent (n-hexane) extraction technique from beauty leaf (Calophyllum inophyllum L.) feedstock,” Industrial Crops and Products, vol. 144, p. 112024, Feb. 2020. https://doi.org/10.1016/j.indcrop.2019.112024
dc.relation.references8. W. Sakdasri et al., “Optimization of yield and thymoquinone content of screw press-extracted black cumin seed oil using response surface methodology,” Industrial Crops and Products, vol. 191, p. 115901, Jan. 2023.
dc.relation.references9. T. Kiss, V. Mašán, and P. Híc, “Antioxidant capacity, total phenolic compounds and fatty acids composition in walnut oil and bagasse pellets produced at different parameters of the screw press,” Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 68, no. 3, pp. 519–527, Jul. 2020.
dc.relation.references10. V. M. Fantino, R. M. Bodoira, M. C. Penci, P. D. Ribotta, and M. L. Martínez, “Effect of screw-press extraction process parameters on the recovery and quality of pistachio oil,” Grasas y Aceites, vol. 71, no. 2, p. 360, Jun. 2020. https://doi.org/10.1016/j.indcrop.2022.115901
dc.relation.references11. E. S. Louis, C. O. Akubuo, and E. U. Odigboh, “Effect of some kernel factors on palm kernel oil extraction using a screw press,” Agricultural Engineering International: CIGR Journal, vol. 22, no. 1, pp. 156–161, 2020.
dc.relation.references12. S. Nurjanah et al., “Study on the pressing process of kemiri sunan’s oil (Reutealis trisperma) using screwpress machine at different feed material levels,” IOP Conference Series: Earth and Environmental Science, vol. 355, no. 1, p. 012074, Nov. 2019. https://doi.org/10.1088/1755-1315/355/1/012074
dc.relation.references13. O. A. Fakayode and E. A. Ajav, “Development, testing and optimization of a screw press oil expeller for moringa (Moringa oleifera) seeds,” Agricultural Research, vol. 8, no. 1, pp. 102–115, Mar. 2019.
dc.relation.references14. A. Kabutey, D. Herak, C. Mizera, and P. Hrabe, “Theoretical analysis of force, pressure and energy distributions of bulk oil palm kernels along the screwline of a mechanical screw press FL 200,” Agronomy Research, vol. 17, no. 5, pp. 1927–1941, 2019.
dc.relation.references15. Y. S. Indartono, H. Heriawan, and I. A. Kartika, “Innovative and flexible single screw press for the oil extraction of Calophyllum seeds,” Research in Agricultural Engineering, vol. 65, no. 3, pp. 91–97, Sep. 2019.
dc.relation.references16. M. Mursalykova et al., “Mathematical modeling of screw press configuration for processing safflower oil,” Applied Sciences, vol. 13, no. 5, p. 3057, Feb. 2023. https://doi.org/10.3390/app13053057
dc.relation.references17. Mizera, D. Herák, P. Hrebĕ, and A. Kabutey, “Extraction of oil from rapeseed using duo screw press,” Agronomy Research, vol. 16, no. Special Issue 1, pp. 1118–1123, 2018.
dc.relation.references18. C. Vasilachi and S.-S. Biriş, “Modelling by Finite Element Method of the twin-screw of a press for obtaining grape seed oil,” E3S Web of Conferences, vol. 112, p. 03022, Aug. 2019. https://doi.org/10.1051/e3sconf/201911203022
dc.relation.references19. L. Lara-Ojeda, O. Bohórquez, and O. A. González-Estrada, “Numerical modeling of a domestic press for vegetable oil extraction using finite element analysis,” Journal of Physics: Conference Series, vol. 2046, no. 1, p. 012005, Oct. 2021. https://doi.org/10.1088/1742-6596/2046/1/012005
dc.relation.references20. R. Shevchuk and O. Sukach, “Test of the modernized screw oil press,” Bulletin of Lviv National Agrarian University. Agroengineering Research, vol. 24, no. 1, pp. 69–76, Dec. 2020. https://doi.org/10.31734/agroengineering2020.24.069
dc.relation.referencesen1. R. Ortiz et al., "Oil crops for the future," Current Opinion in Plant Biology, vol. 56, pp. 181–189, Aug. 2020. https://doi.org/10.1016/j.pbi.2019.12.003
dc.relation.referencesen2. G. C. Brêda et al., "Current approaches to use oil crops by-products for biodiesel and biolubricant production: Focus on biocatalysis," Bioresource Technology Reports, vol. 18, p. 101030, Jun. 2022. https://doi.org/10.1016/j.biteb.2022.101030
dc.relation.referencesen3. T. S. Brand, J. H. . Van Zyl, and O. Dreyer, "The effect of formaldehyde treatment of canola oilcake meal and sweet lupins on the in situ dry matter and crude protein digestibility," South African Journal of Animal Science, vol. 53, no. 1, pp. 91–100, Apr. 2023. https://doi.org/10.4314/sajas.v53i1.10
dc.relation.referencesen4. A. Petraru and S. Amariei, "Sunflower oilcake as a potential source for the development of edible membranes," Membranes (Basel), vol. 12, no. 8, p. 789, Aug. 2022. https://doi.org/10.3390/membranes12080789
dc.relation.referencesen5. A. Petraru and S. Amariei, "A novel approach about edible packaging materials based on oilcakes - A review," Polymers (Basel), vol. 15, no. 16, p. 3431, Aug. 2023. https://doi.org/10.3390/polym15163431
dc.relation.referencesen6. E. Afkhami Sarai, S. Azadmard-Damirchi, and M. Gharekhani, "Oil extraction from black cumin seeds incorporated with rosemary leaf by cold screw press and evaluation of some of its qualitative properties," Food Science and Technology, vol. 18, no. 113, pp. 225–232, Jul. 2021. https://doi.org/10.52547/fsct.18.113.225
dc.relation.referencesen7. M. M. K. Bhuiya, M. Rasul, M. Khan, N. Ashwath, and M. Mofijur, "Comparison of oil extraction between screw press and solvent (n-hexane) extraction technique from beauty leaf (Calophyllum inophyllum L.) feedstock," Industrial Crops and Products, vol. 144, p. 112024, Feb. 2020. https://doi.org/10.1016/j.indcrop.2019.112024
dc.relation.referencesen8. W. Sakdasri et al., "Optimization of yield and thymoquinone content of screw press-extracted black cumin seed oil using response surface methodology," Industrial Crops and Products, vol. 191, p. 115901, Jan. 2023.
dc.relation.referencesen9. T. Kiss, V. Mašán, and P. Híc, "Antioxidant capacity, total phenolic compounds and fatty acids composition in walnut oil and bagasse pellets produced at different parameters of the screw press," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 68, no. 3, pp. 519–527, Jul. 2020.
dc.relation.referencesen10. V. M. Fantino, R. M. Bodoira, M. C. Penci, P. D. Ribotta, and M. L. Martínez, "Effect of screw-press extraction process parameters on the recovery and quality of pistachio oil," Grasas y Aceites, vol. 71, no. 2, p. 360, Jun. 2020. https://doi.org/10.1016/j.indcrop.2022.115901
dc.relation.referencesen11. E. S. Louis, C. O. Akubuo, and E. U. Odigboh, "Effect of some kernel factors on palm kernel oil extraction using a screw press," Agricultural Engineering International: CIGR Journal, vol. 22, no. 1, pp. 156–161, 2020.
dc.relation.referencesen12. S. Nurjanah et al., "Study on the pressing process of kemiri sunan’s oil (Reutealis trisperma) using screwpress machine at different feed material levels," IOP Conference Series: Earth and Environmental Science, vol. 355, no. 1, p. 012074, Nov. 2019. https://doi.org/10.1088/1755-1315/355/1/012074
dc.relation.referencesen13. O. A. Fakayode and E. A. Ajav, "Development, testing and optimization of a screw press oil expeller for moringa (Moringa oleifera) seeds," Agricultural Research, vol. 8, no. 1, pp. 102–115, Mar. 2019.
dc.relation.referencesen14. A. Kabutey, D. Herak, C. Mizera, and P. Hrabe, "Theoretical analysis of force, pressure and energy distributions of bulk oil palm kernels along the screwline of a mechanical screw press FL 200," Agronomy Research, vol. 17, no. 5, pp. 1927–1941, 2019.
dc.relation.referencesen15. Y. S. Indartono, H. Heriawan, and I. A. Kartika, "Innovative and flexible single screw press for the oil extraction of Calophyllum seeds," Research in Agricultural Engineering, vol. 65, no. 3, pp. 91–97, Sep. 2019.
dc.relation.referencesen16. M. Mursalykova et al., "Mathematical modeling of screw press configuration for processing safflower oil," Applied Sciences, vol. 13, no. 5, p. 3057, Feb. 2023. https://doi.org/10.3390/app13053057
dc.relation.referencesen17. Mizera, D. Herák, P. Hrebĕ, and A. Kabutey, "Extraction of oil from rapeseed using duo screw press," Agronomy Research, vol. 16, no. Special Issue 1, pp. 1118–1123, 2018.
dc.relation.referencesen18. C. Vasilachi and S.-S. Biriş, "Modelling by Finite Element Method of the twin-screw of a press for obtaining grape seed oil," E3S Web of Conferences, vol. 112, p. 03022, Aug. 2019. https://doi.org/10.1051/e3sconf/201911203022
dc.relation.referencesen19. L. Lara-Ojeda, O. Bohórquez, and O. A. González-Estrada, "Numerical modeling of a domestic press for vegetable oil extraction using finite element analysis," Journal of Physics: Conference Series, vol. 2046, no. 1, p. 012005, Oct. 2021. https://doi.org/10.1088/1742-6596/2046/1/012005
dc.relation.referencesen20. R. Shevchuk and O. Sukach, "Test of the modernized screw oil press," Bulletin of Lviv National Agrarian University. Agroengineering Research, vol. 24, no. 1, pp. 69–76, Dec. 2020. https://doi.org/10.31734/agroengineering2020.24.069
dc.relation.urihttps://doi.org/10.1016/j.pbi.2019.12.003
dc.relation.urihttps://doi.org/10.1016/j.biteb.2022.101030
dc.relation.urihttps://doi.org/10.4314/sajas.v53i1.10
dc.relation.urihttps://doi.org/10.3390/membranes12080789
dc.relation.urihttps://doi.org/10.3390/polym15163431
dc.relation.urihttps://doi.org/10.52547/fsct.18.113.225
dc.relation.urihttps://doi.org/10.1016/j.indcrop.2019.112024
dc.relation.urihttps://doi.org/10.1016/j.indcrop.2022.115901
dc.relation.urihttps://doi.org/10.1088/1755-1315/355/1/012074
dc.relation.urihttps://doi.org/10.3390/app13053057
dc.relation.urihttps://doi.org/10.1051/e3sconf/201911203022
dc.relation.urihttps://doi.org/10.1088/1742-6596/2046/1/012005
dc.relation.urihttps://doi.org/10.31734/agroengineering2020.24.069
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kachur O., Korendiy V., Havran V., 2023
dc.subjectнафтовмісна сировина
dc.subjectробочі режими
dc.subjectробочі параметри
dc.subjectконструктивні особливості
dc.subjectметод скінченних елементів
dc.subjectнапружено-деформований стан
dc.subjectзони перевантаження
dc.subjectнадійність
dc.subjectдовговічність
dc.subjectoil-containing raw materials
dc.subjectworking regimes
dc.subjectoperation parameters
dc.subjectdesign peculiarities
dc.subjectfinite-element method
dc.subjectstress-strain state
dc.subjectoverloading zones
dc.subjectreliability
dc.subjectdurability
dc.titleDesigning and simulation of an enhanced screw-type press for vegetable oil production
dc.title.alternativeПроектування та моделювання вдосконаленного шнекового пресу для виробництва рослинної оліїї
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v5n1_Kachur_O-Designing_and_simulation_128-136.pdf
Size:
6.1 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v5n1_Kachur_O-Designing_and_simulation_128-136__COVER.png
Size:
449.8 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: