The relationship between lowering the Earth's surface and bearing pressure above the advancing longwall face

dc.citation.epage36
dc.citation.issue1 (34)
dc.citation.journalTitleГеодинаміка
dc.citation.spage28
dc.contributor.affiliationНаціональний технічний університет “Дніпровська політехніка”
dc.contributor.affiliationПридніпровська державна академія будівництва та архітектури
dc.contributor.affiliationDnipro University of Technology
dc.contributor.affiliationPrydniprovska State Academy of Civil Engineering and Architecture
dc.contributor.authorКучин, Олександр
dc.contributor.authorБруй, Ганна
dc.contributor.authorЯнкін, Олександр
dc.contributor.authorІшутіна, Ганна
dc.contributor.authorKuchin, Oleksandr
dc.contributor.authorBrui, Hanna
dc.contributor.authorYankin, Oleksandr
dc.contributor.authorIshutina, Hanna
dc.coverage.placenameЛьвів
dc.date.accessioned2024-02-13T09:29:36Z
dc.date.available2024-02-13T09:29:36Z
dc.date.created2023-06-26
dc.date.issued2023-06-26
dc.description.abstractМета дослідження – розробити методику визначення приросту напруги над рухомим очисним вибоєм шахт Західного Донбасу. У роботі наведено варіант вирішення поставленого завдання на основі аналізу результатів інструментальних спостережень за деформацією масиву гірських порід над очисним вибоєм, що рухається. Основними геометричними показниками зони підвищеного гірського тиску є її ширина (довжина) і дальність поширення в покрівлю і підошву пласта, що відпрацьовується. Кількісні показники цієї зони поки що не розглянуто, а її ширину (довжину) в Західному Донбасі визначено з точністю 50 %. Отже, дослідження у цьому напрямі актуальні. Експериментальною основою для досліджень є результати інструментальних вимірювань деформацій у двох вертикальних свердловинах, що розташовані попереду рухомого очисного вибою та результати опрацювання геодезичних спостережень на 30 спостережних станціях, розташованих на земній поверхні. На основі аналізу геодезичних інструментальних спостережень за зсувом масиву, що підробляється, уточнено геометричні параметри зони підвищеного гірського тиску. Запропоновано методику визначення коефіцієнта приросту напруги над очисним вибоєм шахт Західного Донбасу, що рухається. Встановлено емпіричні коефіцієнти функції розподілу вертикальної напруги в межах зони опорного тиску. Встановлено взаємозв’язок між опусканням земної поверхні попереду очисного вибою, що рухається, і приростами напруг у крайовій частині розроблюваної очисної виробки. Достовірність отриманих результатів підтверджено геофізичними дослідженнями у Західному Донбасі, а також результатами натурних спостережень.
dc.description.abstractThis work aims to develop a method for determining the increase in stresses above an advancing longwall face of Western Donbas mines. The paper presents a solution to the problem. It is based on the analysis of geodetic instrumental observations of the earth's surface lowering and rock mass deformation above the advancing longwall face. Length and propagation in the roof and floor of the extracted seam are the main geometrical parameters of the zone of high rock pressure. Currently, the quantitative parameters of this zone are not considered. And its length under the conditions of Western Donbas is determined with an accuracy of 50%. Thus, research in this direction is relevant. The experimental basis for the research includes the results of observations performed at two vertical borehole extensometers and the results of data processing obtained at more than 30 observation stations on the Earth's surface. Thus, the research specified the geometrical parameters of the zone of high rock pressure and the nature of the vertical stress distribution within this zone. The paper introduces a method to determine a coefficient of stress increase above the advancing longwall face of Western Donbas mines. We also established the empirical coefficients of the vertical stress distribution function within the abutment pressure zone. There is a relationship between the lowering of the earth's surface and the values of the stress increase in the borehole edge part. The reliability of the obtained results is confirmed by geophysical studies in Western Donbas, as well as by the results of field observations.
dc.format.extent28-36
dc.format.pages9
dc.identifier.citationThe relationship between lowering the Earth's surface and bearing pressure above the advancing longwall face / Oleksandr Kuchin, Hanna Brui, Oleksandr Yankin, Hanna Ishutina // Geodynamics. — Lviv Politechnic Publishing House, 2023. — No 1 (34). — P. 28–36.
dc.identifier.citationenThe relationship between lowering the Earth's surface and bearing pressure above the advancing longwall face / Oleksandr Kuchin, Hanna Brui, Oleksandr Yankin, Hanna Ishutina // Geodynamics. — Lviv Politechnic Publishing House, 2023. — No 1 (34). — P. 28–36.
dc.identifier.doidoi.org/10.23939/jgd2023.01.028
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61313
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1 (34), 2023
dc.relation.ispartofGeodynamics, 1 (34), 2023
dc.relation.referencesChen, B., Li, Z., Yu, C., Fairbairn, D., Kang, J., Hu, J., & Liang, L. (2020). Three-dimensional time-varying large surface displacements in coal exploiting areas revealed through integration of SAR pixel offset measurements and mining subsidence model. Remote Sens. Environ., 240, 111663. https://doi.org/10.1016/j.rse.2020.111663
dc.relation.referencesChen, L., Zhang, L., Tang, Y., & Zhang, H. (2018). Analysis of mining-induced subsidence prediction by exponent Knothe model combined with INSAR and leveling. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, (4)3, 53–59. https://doi.org/10.5194/isprs-annals-IV-3-53-2018
dc.relation.referencesDai, H., Li, P., Marzhan, N., Yan, Y., Yuan, C., Serik, T., Guo, J., Zhakypbek, Y., & Seituly, K. (2022). Subsidence control method by inversely-inclined slicing and upward mining for ultra-thick steep seams. Int J Min Sci Technol., 32(1), 103–112. https://doi.org/10.1016/j.ijmst.2021.10.003
dc.relation.referencesElashiry, A. A., Gomma, W. A., & Imbaby, S. S. (2009). Numerical modeling of surface subsidence induced by underground phosphate mines at Abu-Tatur area. Journal of Engineering Sciences, Assiut University, (37) 3, 699–709.
dc.relation.referencesHolla, L., & Barclay, E. (2000). Mine subsidence on the Southern Coalfield New South Wale. Publications of the New South Wales Department of Mineral Resources, Sydney, 118 p.
dc.relation.referencesJunker, M. (2006). Gebirgsbeherrschung von Flözstrecken. Glückauf, Essen, Germany, 172 p.
dc.relation.referencesKD 12.01.01.503-2001. Roof control and fastening in longwalls on coal seams with a dip angle of up to 35°º (2001). Standart, Donetsk: DonUGI, 141 p.
dc.relation.referencesKhalymendyk, Yu., Bruy, A., & Zabolotnaya, Yu. (2013). The results of instrumental observations on rock pressure in order to substantiate complete excavation of coal reserves. Annual Scientific-Technical Colletion. Mining of Mineral Deposits, 165-168.
dc.relation.referencesKuchin, A. S. (2011). The shift of a rock mass over a moving stope in the Western Donbass. Scientific practice of UkrNDMI NAS of Ukraine, (9), 10-19. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/99673/01-Kuchin.pdf?sequence=1. (in Russian).
dc.relation.referencesKuchin, A. S. (2011). The movement of the rock mass in the Western Donbas. Problems of mountain pressure, Collection of scientific papers. Donetsk: DonNTU, (19), 38–61. (in Russian).
dc.relation.referencesKuchin, O. S., Chemakina, M. V., & Balafin I. E. (2017). Displacement of undermining rock mass above the moving longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 55–60. http://nvngu.in.ua/index.php/en/component/jdownloads/finish/66-01/8599-0...
dc.relation.referencesLee, F. T., & Abel, J. F. (1983). Subsidence from underground mining environmental analysis and planning considerations. Geological survey circular (876), 28 р. https://www.osti.gov/biblio/6149371
dc.relation.referencesMa, S., Li, J., & Li, Z. (2022). Critical support pressure of shield tunnel face in soft-hard mixed strata. Transp. Geotech., 37, 100853. https://doi.org/10.1016/j.trgeo.2022.100853
dc.relation.referencesMonitoring the state of workings in areas of high rock pressure of deep mines "Pavlogradugol" and developing recommendations for supporting workings in these areas. (2011). Final report on research project №050128 /10-11/ 4677-U.
dc.relation.referencesNazimko, I. V. (2008). Experimental evaluation of the length of dependence of rock consoles. Naukovі pracі UkrNDMІ NAN Ukrainy, (2), 118–124.
dc.relation.referencesRules for undermining buildings, structures and natural objects during underground coal mining: HSTU 101.00159226.001-2003. Kyiv: Minpalyvenerho Ukrainy, 2003. 126 p. https://zakon.isu.net.ua/sites/default/files/normdocs/pravila_pidrobki_b...
dc.relation.referencesLocation, security and support of mine workings in the processing of coal seams in mines. Guiding normative document. (2001). Standart, Kyiv: Ministry of Energy and Coal Industry of Ukraine, 148 p.
dc.relation.referencesSdvyzhkova, O. O., Babets, D. V., Kravchenko, K. V., & Smirnov, A.V. (2016). Determination of the displacements of rock mass nearby the dismantling chamber under effect of plow longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 34–42. http://nvngu.in.ua/index.php/en/component/jdownloads/finish/60-02/8483-2...
dc.relation.referencesSepehri, M., Apel, D. B., & Hall, R. A. (2017). Prediction of mining-induced surface subsidence and ground movements at a Canadian diamond mine using an elastoplastic finite element model. Int. J. Rock Mech. Min., 100, 73–82. https://doi.org/10.1016/j.ijrmms.2017.10.006
dc.relation.referencesShahsenko, O. M., Khoziaikina, N. V., & Tereshchuk, R. M. (2017). Distribution of displacements around a single mine working driven in stratified rock mass. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 40–46. http://nvngu.in.ua/jdownloads/pdf/2017/06/6_2017_Shashenko.pdf
dc.relation.referencesSubsidence from coal mining activities. Background review. (2014). Department of the Environment, Commonwealth of Australia, 67 р.
dc.relation.referencesSubsidence Monitoring Program ULN SD PLN 0061 (2007). Environment & Community Management, Ulan Coal Mines Ltd, 52 р.
dc.relation.referencesTereschuk, R., Grigoriev, O., Tokar, L., & Tikhonenko, V. (2014). Control of stability of mine workings equipped with roof bolting. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 411-415.
dc.relation.referencesYang, D., Qiu, H., Ma, S., Liu, Z., Du, C., Zhu, Y., & Cao, M. (2022). Slow surface subsidence and its impact on shallow loess landslides in a coal mining area. CATENA, 209, 105830. https://doi.org/10.1016/j.catena.2021.105830
dc.relation.referencesZhao, J., & Konietzky, H. (2020). Numerical analysis and prediction of ground surface movement induced by coal mining and subsequent groundwater flooding. Int. J. Coal Geol., 229, 103565. https://doi.org/10.1016/j.coal.2020.103565
dc.relation.referencesZheng, M., Li, S., Zhao, H., Huang, X., & Qiu, S. (2021). Probabilistic analysis of tunnel displacements based on correlative recognition of rock mass parameters. Geosci. Front., 12(4), 101136. https://doi.org/10.1016/j.gsf.2020.12.015
dc.relation.referencesenChen, B., Li, Z., Yu, C., Fairbairn, D., Kang, J., Hu, J., & Liang, L. (2020). Three-dimensional time-varying large surface displacements in coal exploiting areas revealed through integration of SAR pixel offset measurements and mining subsidence model. Remote Sens. Environ., 240, 111663. https://doi.org/10.1016/j.rse.2020.111663
dc.relation.referencesenChen, L., Zhang, L., Tang, Y., & Zhang, H. (2018). Analysis of mining-induced subsidence prediction by exponent Knothe model combined with INSAR and leveling. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, (4)3, 53–59. https://doi.org/10.5194/isprs-annals-IV-3-53-2018
dc.relation.referencesenDai, H., Li, P., Marzhan, N., Yan, Y., Yuan, C., Serik, T., Guo, J., Zhakypbek, Y., & Seituly, K. (2022). Subsidence control method by inversely-inclined slicing and upward mining for ultra-thick steep seams. Int J Min Sci Technol., 32(1), 103–112. https://doi.org/10.1016/j.ijmst.2021.10.003
dc.relation.referencesenElashiry, A. A., Gomma, W. A., & Imbaby, S. S. (2009). Numerical modeling of surface subsidence induced by underground phosphate mines at Abu-Tatur area. Journal of Engineering Sciences, Assiut University, (37) 3, 699–709.
dc.relation.referencesenHolla, L., & Barclay, E. (2000). Mine subsidence on the Southern Coalfield New South Wale. Publications of the New South Wales Department of Mineral Resources, Sydney, 118 p.
dc.relation.referencesenJunker, M. (2006). Gebirgsbeherrschung von Flözstrecken. Glückauf, Essen, Germany, 172 p.
dc.relation.referencesenKD 12.01.01.503-2001. Roof control and fastening in longwalls on coal seams with a dip angle of up to 35°º (2001). Standart, Donetsk: DonUGI, 141 p.
dc.relation.referencesenKhalymendyk, Yu., Bruy, A., & Zabolotnaya, Yu. (2013). The results of instrumental observations on rock pressure in order to substantiate complete excavation of coal reserves. Annual Scientific-Technical Colletion. Mining of Mineral Deposits, 165-168.
dc.relation.referencesenKuchin, A. S. (2011). The shift of a rock mass over a moving stope in the Western Donbass. Scientific practice of UkrNDMI NAS of Ukraine, (9), 10-19. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/99673/01-Kuchin.pdf?sequence=1. (in Russian).
dc.relation.referencesenKuchin, A. S. (2011). The movement of the rock mass in the Western Donbas. Problems of mountain pressure, Collection of scientific papers. Donetsk: DonNTU, (19), 38–61. (in Russian).
dc.relation.referencesenKuchin, O. S., Chemakina, M. V., & Balafin I. E. (2017). Displacement of undermining rock mass above the moving longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 55–60. http://nvngu.in.ua/index.php/en/component/jdownloads/finish/66-01/8599-0...
dc.relation.referencesenLee, F. T., & Abel, J. F. (1983). Subsidence from underground mining environmental analysis and planning considerations. Geological survey circular (876), 28 r. https://www.osti.gov/biblio/6149371
dc.relation.referencesenMa, S., Li, J., & Li, Z. (2022). Critical support pressure of shield tunnel face in soft-hard mixed strata. Transp. Geotech., 37, 100853. https://doi.org/10.1016/j.trgeo.2022.100853
dc.relation.referencesenMonitoring the state of workings in areas of high rock pressure of deep mines "Pavlogradugol" and developing recommendations for supporting workings in these areas. (2011). Final report on research project No 050128 /10-11/ 4677-U.
dc.relation.referencesenNazimko, I. V. (2008). Experimental evaluation of the length of dependence of rock consoles. Naukovi praci UkrNDMI NAN Ukrainy, (2), 118–124.
dc.relation.referencesenRules for undermining buildings, structures and natural objects during underground coal mining: HSTU 101.00159226.001-2003. Kyiv: Minpalyvenerho Ukrainy, 2003. 126 p. https://zakon.isu.net.ua/sites/default/files/normdocs/pravila_pidrobki_b...
dc.relation.referencesenLocation, security and support of mine workings in the processing of coal seams in mines. Guiding normative document. (2001). Standart, Kyiv: Ministry of Energy and Coal Industry of Ukraine, 148 p.
dc.relation.referencesenSdvyzhkova, O. O., Babets, D. V., Kravchenko, K. V., & Smirnov, A.V. (2016). Determination of the displacements of rock mass nearby the dismantling chamber under effect of plow longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 34–42. http://nvngu.in.ua/index.php/en/component/jdownloads/finish/60-02/8483-2...
dc.relation.referencesenSepehri, M., Apel, D. B., & Hall, R. A. (2017). Prediction of mining-induced surface subsidence and ground movements at a Canadian diamond mine using an elastoplastic finite element model. Int. J. Rock Mech. Min., 100, 73–82. https://doi.org/10.1016/j.ijrmms.2017.10.006
dc.relation.referencesenShahsenko, O. M., Khoziaikina, N. V., & Tereshchuk, R. M. (2017). Distribution of displacements around a single mine working driven in stratified rock mass. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 40–46. http://nvngu.in.ua/jdownloads/pdf/2017/06/6_2017_Shashenko.pdf
dc.relation.referencesenSubsidence from coal mining activities. Background review. (2014). Department of the Environment, Commonwealth of Australia, 67 r.
dc.relation.referencesenSubsidence Monitoring Program ULN SD PLN 0061 (2007). Environment & Community Management, Ulan Coal Mines Ltd, 52 r.
dc.relation.referencesenTereschuk, R., Grigoriev, O., Tokar, L., & Tikhonenko, V. (2014). Control of stability of mine workings equipped with roof bolting. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 411-415.
dc.relation.referencesenYang, D., Qiu, H., Ma, S., Liu, Z., Du, C., Zhu, Y., & Cao, M. (2022). Slow surface subsidence and its impact on shallow loess landslides in a coal mining area. CATENA, 209, 105830. https://doi.org/10.1016/j.catena.2021.105830
dc.relation.referencesenZhao, J., & Konietzky, H. (2020). Numerical analysis and prediction of ground surface movement induced by coal mining and subsequent groundwater flooding. Int. J. Coal Geol., 229, 103565. https://doi.org/10.1016/j.coal.2020.103565
dc.relation.referencesenZheng, M., Li, S., Zhao, H., Huang, X., & Qiu, S. (2021). Probabilistic analysis of tunnel displacements based on correlative recognition of rock mass parameters. Geosci. Front., 12(4), 101136. https://doi.org/10.1016/j.gsf.2020.12.015
dc.relation.urihttps://doi.org/10.1016/j.rse.2020.111663
dc.relation.urihttps://doi.org/10.5194/isprs-annals-IV-3-53-2018
dc.relation.urihttps://doi.org/10.1016/j.ijmst.2021.10.003
dc.relation.urihttp://dspace.nbuv.gov.ua/bitstream/handle/123456789/99673/01-Kuchin.pdf?sequence=1
dc.relation.urihttp://nvngu.in.ua/index.php/en/component/jdownloads/finish/66-01/8599-0..
dc.relation.urihttps://www.osti.gov/biblio/6149371
dc.relation.urihttps://doi.org/10.1016/j.trgeo.2022.100853
dc.relation.urihttps://zakon.isu.net.ua/sites/default/files/normdocs/pravila_pidrobki_b..
dc.relation.urihttp://nvngu.in.ua/index.php/en/component/jdownloads/finish/60-02/8483-2..
dc.relation.urihttps://doi.org/10.1016/j.ijrmms.2017.10.006
dc.relation.urihttp://nvngu.in.ua/jdownloads/pdf/2017/06/6_2017_Shashenko.pdf
dc.relation.urihttps://doi.org/10.1016/j.catena.2021.105830
dc.relation.urihttps://doi.org/10.1016/j.coal.2020.103565
dc.relation.urihttps://doi.org/10.1016/j.gsf.2020.12.015
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2023
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2023
dc.rights.holder© Національний університет «Львівська політехніка», 2023
dc.rights.holder© O. Kuchin, H. Brui, O. Yankin, H. Ishutina
dc.subjectопускання земної поверхні
dc.subjectосідання
dc.subjectпідвищений гірський тиск
dc.subjectприріст гірського тиску
dc.subjectгеодезичні інструментальні спостереження
dc.subjectекстензометри свердловинні
dc.subjectEarth's surface
dc.subjectsubsidence
dc.subjecthigh rock pressure
dc.subjectrock pressure increment
dc.subjectsurveying instrumental observations
dc.subjectborehole extensometer
dc.subject.udc528.4
dc.titleThe relationship between lowering the Earth's surface and bearing pressure above the advancing longwall face
dc.title.alternativeВзаємозв’язок між опусканням земної поверхні та опорним тиском над очисним вибоєм
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023n1_Kuchin_O-The_relationship_between_lowering_28-36.pdf
Size:
851.27 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023n1_Kuchin_O-The_relationship_between_lowering_28-36__COVER.png
Size:
504.26 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: