The relationship between lowering the Earth's surface and bearing pressure above the advancing longwall face
dc.citation.epage | 36 | |
dc.citation.issue | 1 (34) | |
dc.citation.journalTitle | Геодинаміка | |
dc.citation.spage | 28 | |
dc.contributor.affiliation | Національний технічний університет “Дніпровська політехніка” | |
dc.contributor.affiliation | Придніпровська державна академія будівництва та архітектури | |
dc.contributor.affiliation | Dnipro University of Technology | |
dc.contributor.affiliation | Prydniprovska State Academy of Civil Engineering and Architecture | |
dc.contributor.author | Кучин, Олександр | |
dc.contributor.author | Бруй, Ганна | |
dc.contributor.author | Янкін, Олександр | |
dc.contributor.author | Ішутіна, Ганна | |
dc.contributor.author | Kuchin, Oleksandr | |
dc.contributor.author | Brui, Hanna | |
dc.contributor.author | Yankin, Oleksandr | |
dc.contributor.author | Ishutina, Hanna | |
dc.coverage.placename | Львів | |
dc.date.accessioned | 2024-02-13T09:29:36Z | |
dc.date.available | 2024-02-13T09:29:36Z | |
dc.date.created | 2023-06-26 | |
dc.date.issued | 2023-06-26 | |
dc.description.abstract | Мета дослідження – розробити методику визначення приросту напруги над рухомим очисним вибоєм шахт Західного Донбасу. У роботі наведено варіант вирішення поставленого завдання на основі аналізу результатів інструментальних спостережень за деформацією масиву гірських порід над очисним вибоєм, що рухається. Основними геометричними показниками зони підвищеного гірського тиску є її ширина (довжина) і дальність поширення в покрівлю і підошву пласта, що відпрацьовується. Кількісні показники цієї зони поки що не розглянуто, а її ширину (довжину) в Західному Донбасі визначено з точністю 50 %. Отже, дослідження у цьому напрямі актуальні. Експериментальною основою для досліджень є результати інструментальних вимірювань деформацій у двох вертикальних свердловинах, що розташовані попереду рухомого очисного вибою та результати опрацювання геодезичних спостережень на 30 спостережних станціях, розташованих на земній поверхні. На основі аналізу геодезичних інструментальних спостережень за зсувом масиву, що підробляється, уточнено геометричні параметри зони підвищеного гірського тиску. Запропоновано методику визначення коефіцієнта приросту напруги над очисним вибоєм шахт Західного Донбасу, що рухається. Встановлено емпіричні коефіцієнти функції розподілу вертикальної напруги в межах зони опорного тиску. Встановлено взаємозв’язок між опусканням земної поверхні попереду очисного вибою, що рухається, і приростами напруг у крайовій частині розроблюваної очисної виробки. Достовірність отриманих результатів підтверджено геофізичними дослідженнями у Західному Донбасі, а також результатами натурних спостережень. | |
dc.description.abstract | This work aims to develop a method for determining the increase in stresses above an advancing longwall face of Western Donbas mines. The paper presents a solution to the problem. It is based on the analysis of geodetic instrumental observations of the earth's surface lowering and rock mass deformation above the advancing longwall face. Length and propagation in the roof and floor of the extracted seam are the main geometrical parameters of the zone of high rock pressure. Currently, the quantitative parameters of this zone are not considered. And its length under the conditions of Western Donbas is determined with an accuracy of 50%. Thus, research in this direction is relevant. The experimental basis for the research includes the results of observations performed at two vertical borehole extensometers and the results of data processing obtained at more than 30 observation stations on the Earth's surface. Thus, the research specified the geometrical parameters of the zone of high rock pressure and the nature of the vertical stress distribution within this zone. The paper introduces a method to determine a coefficient of stress increase above the advancing longwall face of Western Donbas mines. We also established the empirical coefficients of the vertical stress distribution function within the abutment pressure zone. There is a relationship between the lowering of the earth's surface and the values of the stress increase in the borehole edge part. The reliability of the obtained results is confirmed by geophysical studies in Western Donbas, as well as by the results of field observations. | |
dc.format.extent | 28-36 | |
dc.format.pages | 9 | |
dc.identifier.citation | The relationship between lowering the Earth's surface and bearing pressure above the advancing longwall face / Oleksandr Kuchin, Hanna Brui, Oleksandr Yankin, Hanna Ishutina // Geodynamics. — Lviv Politechnic Publishing House, 2023. — No 1 (34). — P. 28–36. | |
dc.identifier.citationen | The relationship between lowering the Earth's surface and bearing pressure above the advancing longwall face / Oleksandr Kuchin, Hanna Brui, Oleksandr Yankin, Hanna Ishutina // Geodynamics. — Lviv Politechnic Publishing House, 2023. — No 1 (34). — P. 28–36. | |
dc.identifier.doi | doi.org/10.23939/jgd2023.01.028 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61313 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодинаміка, 1 (34), 2023 | |
dc.relation.ispartof | Geodynamics, 1 (34), 2023 | |
dc.relation.references | Chen, B., Li, Z., Yu, C., Fairbairn, D., Kang, J., Hu, J., & Liang, L. (2020). Three-dimensional time-varying large surface displacements in coal exploiting areas revealed through integration of SAR pixel offset measurements and mining subsidence model. Remote Sens. Environ., 240, 111663. https://doi.org/10.1016/j.rse.2020.111663 | |
dc.relation.references | Chen, L., Zhang, L., Tang, Y., & Zhang, H. (2018). Analysis of mining-induced subsidence prediction by exponent Knothe model combined with INSAR and leveling. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, (4)3, 53–59. https://doi.org/10.5194/isprs-annals-IV-3-53-2018 | |
dc.relation.references | Dai, H., Li, P., Marzhan, N., Yan, Y., Yuan, C., Serik, T., Guo, J., Zhakypbek, Y., & Seituly, K. (2022). Subsidence control method by inversely-inclined slicing and upward mining for ultra-thick steep seams. Int J Min Sci Technol., 32(1), 103–112. https://doi.org/10.1016/j.ijmst.2021.10.003 | |
dc.relation.references | Elashiry, A. A., Gomma, W. A., & Imbaby, S. S. (2009). Numerical modeling of surface subsidence induced by underground phosphate mines at Abu-Tatur area. Journal of Engineering Sciences, Assiut University, (37) 3, 699–709. | |
dc.relation.references | Holla, L., & Barclay, E. (2000). Mine subsidence on the Southern Coalfield New South Wale. Publications of the New South Wales Department of Mineral Resources, Sydney, 118 p. | |
dc.relation.references | Junker, M. (2006). Gebirgsbeherrschung von Flözstrecken. Glückauf, Essen, Germany, 172 p. | |
dc.relation.references | KD 12.01.01.503-2001. Roof control and fastening in longwalls on coal seams with a dip angle of up to 35°º (2001). Standart, Donetsk: DonUGI, 141 p. | |
dc.relation.references | Khalymendyk, Yu., Bruy, A., & Zabolotnaya, Yu. (2013). The results of instrumental observations on rock pressure in order to substantiate complete excavation of coal reserves. Annual Scientific-Technical Colletion. Mining of Mineral Deposits, 165-168. | |
dc.relation.references | Kuchin, A. S. (2011). The shift of a rock mass over a moving stope in the Western Donbass. Scientific practice of UkrNDMI NAS of Ukraine, (9), 10-19. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/99673/01-Kuchin.pdf?sequence=1. (in Russian). | |
dc.relation.references | Kuchin, A. S. (2011). The movement of the rock mass in the Western Donbas. Problems of mountain pressure, Collection of scientific papers. Donetsk: DonNTU, (19), 38–61. (in Russian). | |
dc.relation.references | Kuchin, O. S., Chemakina, M. V., & Balafin I. E. (2017). Displacement of undermining rock mass above the moving longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 55–60. http://nvngu.in.ua/index.php/en/component/jdownloads/finish/66-01/8599-0... | |
dc.relation.references | Lee, F. T., & Abel, J. F. (1983). Subsidence from underground mining environmental analysis and planning considerations. Geological survey circular (876), 28 р. https://www.osti.gov/biblio/6149371 | |
dc.relation.references | Ma, S., Li, J., & Li, Z. (2022). Critical support pressure of shield tunnel face in soft-hard mixed strata. Transp. Geotech., 37, 100853. https://doi.org/10.1016/j.trgeo.2022.100853 | |
dc.relation.references | Monitoring the state of workings in areas of high rock pressure of deep mines "Pavlogradugol" and developing recommendations for supporting workings in these areas. (2011). Final report on research project №050128 /10-11/ 4677-U. | |
dc.relation.references | Nazimko, I. V. (2008). Experimental evaluation of the length of dependence of rock consoles. Naukovі pracі UkrNDMІ NAN Ukrainy, (2), 118–124. | |
dc.relation.references | Rules for undermining buildings, structures and natural objects during underground coal mining: HSTU 101.00159226.001-2003. Kyiv: Minpalyvenerho Ukrainy, 2003. 126 p. https://zakon.isu.net.ua/sites/default/files/normdocs/pravila_pidrobki_b... | |
dc.relation.references | Location, security and support of mine workings in the processing of coal seams in mines. Guiding normative document. (2001). Standart, Kyiv: Ministry of Energy and Coal Industry of Ukraine, 148 p. | |
dc.relation.references | Sdvyzhkova, O. O., Babets, D. V., Kravchenko, K. V., & Smirnov, A.V. (2016). Determination of the displacements of rock mass nearby the dismantling chamber under effect of plow longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 34–42. http://nvngu.in.ua/index.php/en/component/jdownloads/finish/60-02/8483-2... | |
dc.relation.references | Sepehri, M., Apel, D. B., & Hall, R. A. (2017). Prediction of mining-induced surface subsidence and ground movements at a Canadian diamond mine using an elastoplastic finite element model. Int. J. Rock Mech. Min., 100, 73–82. https://doi.org/10.1016/j.ijrmms.2017.10.006 | |
dc.relation.references | Shahsenko, O. M., Khoziaikina, N. V., & Tereshchuk, R. M. (2017). Distribution of displacements around a single mine working driven in stratified rock mass. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 40–46. http://nvngu.in.ua/jdownloads/pdf/2017/06/6_2017_Shashenko.pdf | |
dc.relation.references | Subsidence from coal mining activities. Background review. (2014). Department of the Environment, Commonwealth of Australia, 67 р. | |
dc.relation.references | Subsidence Monitoring Program ULN SD PLN 0061 (2007). Environment & Community Management, Ulan Coal Mines Ltd, 52 р. | |
dc.relation.references | Tereschuk, R., Grigoriev, O., Tokar, L., & Tikhonenko, V. (2014). Control of stability of mine workings equipped with roof bolting. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 411-415. | |
dc.relation.references | Yang, D., Qiu, H., Ma, S., Liu, Z., Du, C., Zhu, Y., & Cao, M. (2022). Slow surface subsidence and its impact on shallow loess landslides in a coal mining area. CATENA, 209, 105830. https://doi.org/10.1016/j.catena.2021.105830 | |
dc.relation.references | Zhao, J., & Konietzky, H. (2020). Numerical analysis and prediction of ground surface movement induced by coal mining and subsequent groundwater flooding. Int. J. Coal Geol., 229, 103565. https://doi.org/10.1016/j.coal.2020.103565 | |
dc.relation.references | Zheng, M., Li, S., Zhao, H., Huang, X., & Qiu, S. (2021). Probabilistic analysis of tunnel displacements based on correlative recognition of rock mass parameters. Geosci. Front., 12(4), 101136. https://doi.org/10.1016/j.gsf.2020.12.015 | |
dc.relation.referencesen | Chen, B., Li, Z., Yu, C., Fairbairn, D., Kang, J., Hu, J., & Liang, L. (2020). Three-dimensional time-varying large surface displacements in coal exploiting areas revealed through integration of SAR pixel offset measurements and mining subsidence model. Remote Sens. Environ., 240, 111663. https://doi.org/10.1016/j.rse.2020.111663 | |
dc.relation.referencesen | Chen, L., Zhang, L., Tang, Y., & Zhang, H. (2018). Analysis of mining-induced subsidence prediction by exponent Knothe model combined with INSAR and leveling. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, (4)3, 53–59. https://doi.org/10.5194/isprs-annals-IV-3-53-2018 | |
dc.relation.referencesen | Dai, H., Li, P., Marzhan, N., Yan, Y., Yuan, C., Serik, T., Guo, J., Zhakypbek, Y., & Seituly, K. (2022). Subsidence control method by inversely-inclined slicing and upward mining for ultra-thick steep seams. Int J Min Sci Technol., 32(1), 103–112. https://doi.org/10.1016/j.ijmst.2021.10.003 | |
dc.relation.referencesen | Elashiry, A. A., Gomma, W. A., & Imbaby, S. S. (2009). Numerical modeling of surface subsidence induced by underground phosphate mines at Abu-Tatur area. Journal of Engineering Sciences, Assiut University, (37) 3, 699–709. | |
dc.relation.referencesen | Holla, L., & Barclay, E. (2000). Mine subsidence on the Southern Coalfield New South Wale. Publications of the New South Wales Department of Mineral Resources, Sydney, 118 p. | |
dc.relation.referencesen | Junker, M. (2006). Gebirgsbeherrschung von Flözstrecken. Glückauf, Essen, Germany, 172 p. | |
dc.relation.referencesen | KD 12.01.01.503-2001. Roof control and fastening in longwalls on coal seams with a dip angle of up to 35°º (2001). Standart, Donetsk: DonUGI, 141 p. | |
dc.relation.referencesen | Khalymendyk, Yu., Bruy, A., & Zabolotnaya, Yu. (2013). The results of instrumental observations on rock pressure in order to substantiate complete excavation of coal reserves. Annual Scientific-Technical Colletion. Mining of Mineral Deposits, 165-168. | |
dc.relation.referencesen | Kuchin, A. S. (2011). The shift of a rock mass over a moving stope in the Western Donbass. Scientific practice of UkrNDMI NAS of Ukraine, (9), 10-19. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/99673/01-Kuchin.pdf?sequence=1. (in Russian). | |
dc.relation.referencesen | Kuchin, A. S. (2011). The movement of the rock mass in the Western Donbas. Problems of mountain pressure, Collection of scientific papers. Donetsk: DonNTU, (19), 38–61. (in Russian). | |
dc.relation.referencesen | Kuchin, O. S., Chemakina, M. V., & Balafin I. E. (2017). Displacement of undermining rock mass above the moving longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 55–60. http://nvngu.in.ua/index.php/en/component/jdownloads/finish/66-01/8599-0... | |
dc.relation.referencesen | Lee, F. T., & Abel, J. F. (1983). Subsidence from underground mining environmental analysis and planning considerations. Geological survey circular (876), 28 r. https://www.osti.gov/biblio/6149371 | |
dc.relation.referencesen | Ma, S., Li, J., & Li, Z. (2022). Critical support pressure of shield tunnel face in soft-hard mixed strata. Transp. Geotech., 37, 100853. https://doi.org/10.1016/j.trgeo.2022.100853 | |
dc.relation.referencesen | Monitoring the state of workings in areas of high rock pressure of deep mines "Pavlogradugol" and developing recommendations for supporting workings in these areas. (2011). Final report on research project No 050128 /10-11/ 4677-U. | |
dc.relation.referencesen | Nazimko, I. V. (2008). Experimental evaluation of the length of dependence of rock consoles. Naukovi praci UkrNDMI NAN Ukrainy, (2), 118–124. | |
dc.relation.referencesen | Rules for undermining buildings, structures and natural objects during underground coal mining: HSTU 101.00159226.001-2003. Kyiv: Minpalyvenerho Ukrainy, 2003. 126 p. https://zakon.isu.net.ua/sites/default/files/normdocs/pravila_pidrobki_b... | |
dc.relation.referencesen | Location, security and support of mine workings in the processing of coal seams in mines. Guiding normative document. (2001). Standart, Kyiv: Ministry of Energy and Coal Industry of Ukraine, 148 p. | |
dc.relation.referencesen | Sdvyzhkova, O. O., Babets, D. V., Kravchenko, K. V., & Smirnov, A.V. (2016). Determination of the displacements of rock mass nearby the dismantling chamber under effect of plow longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 34–42. http://nvngu.in.ua/index.php/en/component/jdownloads/finish/60-02/8483-2... | |
dc.relation.referencesen | Sepehri, M., Apel, D. B., & Hall, R. A. (2017). Prediction of mining-induced surface subsidence and ground movements at a Canadian diamond mine using an elastoplastic finite element model. Int. J. Rock Mech. Min., 100, 73–82. https://doi.org/10.1016/j.ijrmms.2017.10.006 | |
dc.relation.referencesen | Shahsenko, O. M., Khoziaikina, N. V., & Tereshchuk, R. M. (2017). Distribution of displacements around a single mine working driven in stratified rock mass. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 40–46. http://nvngu.in.ua/jdownloads/pdf/2017/06/6_2017_Shashenko.pdf | |
dc.relation.referencesen | Subsidence from coal mining activities. Background review. (2014). Department of the Environment, Commonwealth of Australia, 67 r. | |
dc.relation.referencesen | Subsidence Monitoring Program ULN SD PLN 0061 (2007). Environment & Community Management, Ulan Coal Mines Ltd, 52 r. | |
dc.relation.referencesen | Tereschuk, R., Grigoriev, O., Tokar, L., & Tikhonenko, V. (2014). Control of stability of mine workings equipped with roof bolting. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 411-415. | |
dc.relation.referencesen | Yang, D., Qiu, H., Ma, S., Liu, Z., Du, C., Zhu, Y., & Cao, M. (2022). Slow surface subsidence and its impact on shallow loess landslides in a coal mining area. CATENA, 209, 105830. https://doi.org/10.1016/j.catena.2021.105830 | |
dc.relation.referencesen | Zhao, J., & Konietzky, H. (2020). Numerical analysis and prediction of ground surface movement induced by coal mining and subsequent groundwater flooding. Int. J. Coal Geol., 229, 103565. https://doi.org/10.1016/j.coal.2020.103565 | |
dc.relation.referencesen | Zheng, M., Li, S., Zhao, H., Huang, X., & Qiu, S. (2021). Probabilistic analysis of tunnel displacements based on correlative recognition of rock mass parameters. Geosci. Front., 12(4), 101136. https://doi.org/10.1016/j.gsf.2020.12.015 | |
dc.relation.uri | https://doi.org/10.1016/j.rse.2020.111663 | |
dc.relation.uri | https://doi.org/10.5194/isprs-annals-IV-3-53-2018 | |
dc.relation.uri | https://doi.org/10.1016/j.ijmst.2021.10.003 | |
dc.relation.uri | http://dspace.nbuv.gov.ua/bitstream/handle/123456789/99673/01-Kuchin.pdf?sequence=1 | |
dc.relation.uri | http://nvngu.in.ua/index.php/en/component/jdownloads/finish/66-01/8599-0.. | |
dc.relation.uri | https://www.osti.gov/biblio/6149371 | |
dc.relation.uri | https://doi.org/10.1016/j.trgeo.2022.100853 | |
dc.relation.uri | https://zakon.isu.net.ua/sites/default/files/normdocs/pravila_pidrobki_b.. | |
dc.relation.uri | http://nvngu.in.ua/index.php/en/component/jdownloads/finish/60-02/8483-2.. | |
dc.relation.uri | https://doi.org/10.1016/j.ijrmms.2017.10.006 | |
dc.relation.uri | http://nvngu.in.ua/jdownloads/pdf/2017/06/6_2017_Shashenko.pdf | |
dc.relation.uri | https://doi.org/10.1016/j.catena.2021.105830 | |
dc.relation.uri | https://doi.org/10.1016/j.coal.2020.103565 | |
dc.relation.uri | https://doi.org/10.1016/j.gsf.2020.12.015 | |
dc.rights.holder | © Інститут геології і геохімії горючих копалин Національної академії наук України, 2023 | |
dc.rights.holder | © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2023 | |
dc.rights.holder | © Національний університет «Львівська політехніка», 2023 | |
dc.rights.holder | © O. Kuchin, H. Brui, O. Yankin, H. Ishutina | |
dc.subject | опускання земної поверхні | |
dc.subject | осідання | |
dc.subject | підвищений гірський тиск | |
dc.subject | приріст гірського тиску | |
dc.subject | геодезичні інструментальні спостереження | |
dc.subject | екстензометри свердловинні | |
dc.subject | Earth's surface | |
dc.subject | subsidence | |
dc.subject | high rock pressure | |
dc.subject | rock pressure increment | |
dc.subject | surveying instrumental observations | |
dc.subject | borehole extensometer | |
dc.subject.udc | 528.4 | |
dc.title | The relationship between lowering the Earth's surface and bearing pressure above the advancing longwall face | |
dc.title.alternative | Взаємозв’язок між опусканням земної поверхні та опорним тиском над очисним вибоєм | |
dc.type | Article |
Files
License bundle
1 - 1 of 1