The role of the molecular weight of polyvinylpyrrolidone in the formation of two-layer polyamide/hydrogel membranes of increased strength

dc.citation.epage138
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage132
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationТехнічний університет Кошице
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnical University of Košice
dc.contributor.authorБаран, Н. М.
dc.contributor.authorГриценко, Т. О.
dc.contributor.authorДулебова, Л.
dc.contributor.authorBaran, N. M.
dc.contributor.authorGrytsenko, T. O.
dc.contributor.authorDulebova, L.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:12:27Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractНаведено результати дослідження впливу молекулярної маси полівінілпіролідону на властивості двошарових гідрогель/полікапроамідних мембран. Композиційні мембрани одержано розробленим методом, який полягає у формуванні гідрогелевих мембран з подальшим осадженням з розчину в їх зовнішню поверхню зміцнювального шару на основі поліаміду, модифікованого полівінілпіролідоном. Встановлено, що молекулярна маса полівінілпіролідону, як у складі гідрогелевої мембрани, так і в модифікувальному розчині, істотно впливає на взаємодію між шарами композиційних мембран та їх характеристики, такі як водовміст, міцність під час проривання, осмотичну солепроникність.
dc.description.abstractThe article presents the results of a study of the influence of the molecular weight of polyvinylpyrrolidone on the properties of two-layer hydrogel/polycaproamide membranes. Composite membranes are obtained by the developed method, which consists in the formation of hydrogel membranes with subsequent deposition from a solution into their outer surface of a reinforcing layer based on polyamide modified with polyvinylpyrrolidone. It was established that the molecular weight of polyvinylpyrrolidone, both in the composition of the hydrogel membrane and in the modifying solution, has a significant effect on the interaction between the layers of composite membranes and their characteristics, such as water content, bursting strength , and osmotic salt permeability.
dc.format.extent132-138
dc.format.pages7
dc.identifier.citationBaran N. M. The role of the molecular weight of polyvinylpyrrolidone in the formation of two-layer polyamide/hydrogel membranes of increased strength / N. M. Baran, T. O. Grytsenko, L. Dulebova // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 132–138.
dc.identifier.citationenBaran N. M. The role of the molecular weight of polyvinylpyrrolidone in the formation of two-layer polyamide/hydrogel membranes of increased strength / N. M. Baran, T. O. Grytsenko, L. Dulebova // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 132–138.
dc.identifier.doidoi.org/10.23939/ctas2023.02.132
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63674
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.references1. Fuli Zhao, Dan Yao, Ruiwei Guo, Liandong Deng, Anjie Dong and Jianhua Zhang (2015). Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterials, 5(4), 2054-2130. doi: 10.3390/nano5042054 https://doi.org/10.3390/nano5042054
dc.relation.references2. Hoare, T.R. & Kohane, D.S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer , 49, 1993-2007. doi.org/10.1016/j.polymer.2008.01.027 https://doi.org/10.1016/j.polymer.2008.01.027
dc.relation.references3. Li, Y., Rodrigues, J. & Tomas, H. (2012). Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 41, 2193-2221. https://pubs.rsc.org/en/content/articlelanding/2012/cs/c1cs15203chttps://doi.org/10.1039/C1CS15203C
dc.relation.references4. Annabi, N., Tamayol, A., Uquillas, J.A., Akbari, M., Bertassoni, L.E., Cha, C., Camci-Unal, G.,… Khademhosseini, A. (2014). 25th Anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater., 26(1), 85-123. DOI: 10.1002/adma.201303233 https://doi.org/10.1002/adma.201303233
dc.relation.references5. Caló, E. & Khutoryanskiy, V.V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 65, 252-267. https://doi.org/10.1016/j.eurpolymj.2014.11.024https://doi.org/10.1016/j.eurpolymj.2014.11.024
dc.relation.references6. Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications. Science , 336, 1124-1128. https://doi.org/10.1126/science.1214804https://doi.org/10.1126/science.1214804
dc.relation.references7. Hoffman, A.S. (2012). Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. , 64, 18-23. https://doi.org/10.1016/j.addr.2012.09.010https://doi.org/10.1016/j.addr.2012.09.010
dc.relation.references8. Peppas, N.A., Hilt, J.Z., Khademhosseini, A. & Langer, R. (2006). Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater., 18, 1345-1360. https://doi.org/10.1002/adma.200501612https://doi.org/10.1002/adma.200501612
dc.relation.references9. Slaughter, B.V., Khurshid, S.S., Fisher, O.Z., Khademhosseini, A. & Peppas, N.A. (2009). Hydrogels in regenerative medicine. Adv. Mater., 21, 3307-3329. doi: 10.1002/adma.200802106https://doi.org/10.1002/adma.200802106
dc.relation.references10. Melʹnyk, YU.YA., Baran, N.M., Yatsulʹchak, H.V. & Komyshna M.H. (2017). Formuvannya ta vlastyvosti kompozytsiynykh poliamid-hidrohelevykh membran. Visnyk NU"LP" "Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya", 868, 406-412. https://ena.lpnu.ua/items/54f4cc85-428d-4dbe-a79d-ed74b73b3b56
dc.relation.references11. Suberlyak, O. (2011). UA Patent 94173.
dc.relation.references12. Suberlyak, O. V., Baran, N. M., & Yatsul'chak, H. V. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392-397. https://doi.org/10.1007/s11003-017-0087-6https://doi.org/10.1007/s11003-017-0087-6
dc.relation.references13. Kargin, V.A., Slonimskiy, G.L. (1967). Kratkie ocherki po fiziko-himii polimerov, Moskva: Himiya, 232 p.
dc.relation.references14. Skorokhoda, V., Melnyk, Y., Semenyuk, N., Suberlyak, O. (2015). Obtaining peculiarities and properties of polyvinylpyrrolidone copolymers with hydrophobic vinyl monomers. Chemistry & Chemical Technology, 9\ (1), 55-59. http://science2016.lp.edu.ua/sites/default/files/Full_text_of_%20papers/...https://doi.org/10.23939/chcht09.01.055
dc.relation.references15. Suberlyak, O. V., Baran, N .M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121-126. http://nbuv.gov.ua/UJRN/Vchem_2018_3_19
dc.relation.references16. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. doi: https://doi.org/10.23939/chcht09.04.429.
dc.relation.references17. Dubyaga, V. P., Perepechkin, L. P., & Katalevskiy, Ye. Ye. (1981). Polimernyye membrany. Moskva: Khimiya.
dc.relation.referencesen1. Fuli Zhao, Dan Yao, Ruiwei Guo, Liandong Deng, Anjie Dong and Jianhua Zhang (2015). Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterials, 5(4), 2054-2130. doi: 10.3390/nano5042054 https://doi.org/10.3390/nano5042054
dc.relation.referencesen2. Hoare, T.R. & Kohane, D.S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer , 49, 1993-2007. doi.org/10.1016/j.polymer.2008.01.027 https://doi.org/10.1016/j.polymer.2008.01.027
dc.relation.referencesen3. Li, Y., Rodrigues, J. & Tomas, H. (2012). Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 41, 2193-2221. https://pubs.rsc.org/en/content/articlelanding/2012/cs/P.1cs15203chttps://doi.org/10.1039/P.1CS15203C
dc.relation.referencesen4. Annabi, N., Tamayol, A., Uquillas, J.A., Akbari, M., Bertassoni, L.E., Cha, C., Camci-Unal, G.,… Khademhosseini, A. (2014). 25th Anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater., 26(1), 85-123. DOI: 10.1002/adma.201303233 https://doi.org/10.1002/adma.201303233
dc.relation.referencesen5. Caló, E. & Khutoryanskiy, V.V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 65, 252-267. https://doi.org/10.1016/j.eurpolymj.2014.11.024https://doi.org/10.1016/j.eurpolymj.2014.11.024
dc.relation.referencesen6. Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications. Science , 336, 1124-1128. https://doi.org/10.1126/science.1214804https://doi.org/10.1126/science.1214804
dc.relation.referencesen7. Hoffman, A.S. (2012). Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. , 64, 18-23. https://doi.org/10.1016/j.addr.2012.09.010https://doi.org/10.1016/j.addr.2012.09.010
dc.relation.referencesen8. Peppas, N.A., Hilt, J.Z., Khademhosseini, A. & Langer, R. (2006). Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater., 18, 1345-1360. https://doi.org/10.1002/adma.200501612https://doi.org/10.1002/adma.200501612
dc.relation.referencesen9. Slaughter, B.V., Khurshid, S.S., Fisher, O.Z., Khademhosseini, A. & Peppas, N.A. (2009). Hydrogels in regenerative medicine. Adv. Mater., 21, 3307-3329. doi: 10.1002/adma.200802106https://doi.org/10.1002/adma.200802106
dc.relation.referencesen10. Melʹnyk, YU.YA., Baran, N.M., Yatsulʹchak, H.V. & Komyshna M.H. (2017). Formuvannya ta vlastyvosti kompozytsiynykh poliamid-hidrohelevykh membran. Visnyk NU"LP" "Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya", 868, 406-412. https://ena.lpnu.ua/items/54f4cc85-428d-4dbe-a79d-ed74b73b3b56
dc.relation.referencesen11. Suberlyak, O. (2011). UA Patent 94173.
dc.relation.referencesen12. Suberlyak, O. V., Baran, N. M., & Yatsul'chak, H. V. (2017). Physicomechanical properties of the films based on polyamide-polyvinylpyrrolidone mixtures. Materials Science, 53(3), 392-397. https://doi.org/10.1007/s11003-017-0087-6https://doi.org/10.1007/s11003-017-0087-6
dc.relation.referencesen13. Kargin, V.A., Slonimskiy, G.L. (1967). Kratkie ocherki po fiziko-himii polimerov, Moskva: Himiya, 232 p.
dc.relation.referencesen14. Skorokhoda, V., Melnyk, Y., Semenyuk, N., Suberlyak, O. (2015). Obtaining peculiarities and properties of polyvinylpyrrolidone copolymers with hydrophobic vinyl monomers. Chemistry & Chemical Technology, 9\ (1), 55-59. http://science2016.lp.edu.ua/sites/default/files/Full_text_of_%20papers/...https://doi.org/10.23939/chcht09.01.055
dc.relation.referencesen15. Suberlyak, O. V., Baran, N .M., Melnyk, Y. Y., Yatsulchak, G. V. (2018). Formation of composite hydrogel membranes. Voprosy khimii i khimicheskoi tekhnologii, 3 (118), 121-126. http://nbuv.gov.ua/UJRN/Vchem_2018_3_19
dc.relation.referencesen16. Suberlyak, O., Grytsenko, O., & Kochubei, V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429-434. doi: https://doi.org/10.23939/chcht09.04.429.
dc.relation.referencesen17. Dubyaga, V. P., Perepechkin, L. P., & Katalevskiy, Ye. Ye. (1981). Polimernyye membrany. Moskva: Khimiya.
dc.relation.urihttps://doi.org/10.3390/nano5042054
dc.relation.urihttps://doi.org/10.1016/j.polymer.2008.01.027
dc.relation.urihttps://pubs.rsc.org/en/content/articlelanding/2012/cs/c1cs15203chttps://doi.org/10.1039/C1CS15203C
dc.relation.urihttps://doi.org/10.1002/adma.201303233
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2014.11.024https://doi.org/10.1016/j.eurpolymj.2014.11.024
dc.relation.urihttps://doi.org/10.1126/science.1214804https://doi.org/10.1126/science.1214804
dc.relation.urihttps://doi.org/10.1016/j.addr.2012.09.010https://doi.org/10.1016/j.addr.2012.09.010
dc.relation.urihttps://doi.org/10.1002/adma.200501612https://doi.org/10.1002/adma.200501612
dc.relation.urihttps://doi.org/10.1002/adma.200802106
dc.relation.urihttps://ena.lpnu.ua/items/54f4cc85-428d-4dbe-a79d-ed74b73b3b56
dc.relation.urihttps://doi.org/10.1007/s11003-017-0087-6https://doi.org/10.1007/s11003-017-0087-6
dc.relation.urihttp://science2016.lp.edu.ua/sites/default/files/Full_text_of_%20papers/...https://doi.org/10.23939/chcht09.01.055
dc.relation.urihttp://nbuv.gov.ua/UJRN/Vchem_2018_3_19
dc.relation.urihttps://doi.org/10.23939/chcht09.04.429
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectдвошарові мембрани
dc.subjectмолекулярна маса
dc.subjectгідрогель
dc.subject2-гідроксіетилметакрилат
dc.subjectполівінілпіролідон
dc.subjectполіамід
dc.subjecttwo-layer membranes
dc.subjectmolecular weight
dc.subjecthydrogel
dc.subject2-hydroxyethyl methacrylate
dc.subjectpolyvinylpyrrolidone
dc.subjectpolyamide
dc.titleThe role of the molecular weight of polyvinylpyrrolidone in the formation of two-layer polyamide/hydrogel membranes of increased strength
dc.title.alternativeРоль молекулярної маси полівінілпіролідону у формуванні двошарових поліамід/гідрогелевих мембран підвищеної міцност
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v6n2_Baran_N_M-The_role_of_the_molecular_132-138.pdf
Size:
660.61 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v6n2_Baran_N_M-The_role_of_the_molecular_132-138__COVER.png
Size:
457.71 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: