Application of AHP and GRA methods in Energy Efficiency Potential’s Assessment of Envelopes from Natural Materials

dc.citation.epage62
dc.citation.issue2
dc.citation.spage48
dc.contributor.affiliationВінницький національний технічний університет
dc.contributor.affiliationVinnytsia National Technical University
dc.contributor.authorБікс, Ю. С.
dc.contributor.authorРатушняк, Г. С.
dc.contributor.authorРатушняк, О. Г.
dc.contributor.authorРяполов, П. С.
dc.contributor.authorBiks, Yuriy
dc.contributor.authorRatushnyak, Georgiy
dc.contributor.authorRatushnyak, Olga
dc.contributor.authorRyapolov, Pavlo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2021-12-21T13:16:06Z
dc.date.available2021-12-21T13:16:06Z
dc.date.created2020-03-23
dc.date.issued2020-03-23
dc.description.abstractНайкращий вибір енергоефективних огороджувальних конструкцій з різноманітних доступних матеріалів залишається проблемою. Тому в цій роботі проведена спроба багатокритеріальної оцінки теплотехнічних характеристик деяких будівельних матеріалів природного походження для енергоефективних огороджувальних конструкцій. Наступні типи стін з природних енергоефективних матеріалів розглянуто в порівняльній оцінці: арболіт, саман, панель із солом’яних блоків, землебит, чуркобетон, СІП панель з ековатою, арболіт+солома та енергоефективний теплоблок. Проаналізовано вплив часу теплової інерції τ, теплоємності внутрішньої площі, показника теплової інерції D, загальної величини термічного опору Rtot, вартості матеріалів стін та їхню вагу. Багатокритеріальну чисельну оцінку потенціалу енергоефективності огороджувальної конструкції проводили двома популярними методами – методом аналізу ієрархій (МАІ) як суб’єктивним методом та методом сірого реляційного аналізу (СРА) як об’єктивним методом. Обидва методи дозволяють упорядкувати альтернативи та можуть бути застосовані як інструменти підтримки прийняття рішень у процесі прийняття рішень у виборі найкращої альтернативи з точки зору багатокритеріальної оцінки. Проведені за двома незалежними методиками дослідження показали, що найкращим типом огороджувальної конструкції з точки зору запропонованих критеріїв, є стіна з арболіту а також з арболіту+соломи, майже втричі менший потенціал має стіна із землебиту. Стіни з чуркобетону, енергоефективного теплоблоку та солом’яних панелей, що оцінені за двома методиками мають практично однаковий узагальнений індекс потенціалу енергоефективності. Для більш об’єктивного аналізу, беручи до уваги різноманітність фізичних та фізико-механічних параметрів матеріалу огороджувальних конструкцій стін, запропоновано узагальнений індекс потенціалу енергоефективності огороджувальних конструкцій. Оцінка узагальненого індексу потенціалу енергоефективності розрахована за двома методиками показала, що за МАІ показники мають більш неоднорідні значення величин, що може бути пояснено суб’єктивністю в оцінці при проведенні процедури парних порівнянь альтернатив.
dc.description.abstractThe best choice of energy efficient envelope from variety of available materials is still the challenge. Therefore, the attempt of thermal performance multi-criteria evaluation of some building materials of natural origin for energy-efficient envelopes is conducted in present paper. Such types of walls from natural energy-efficient materials are considered in comparison assessment: hempcrete, adobe, strawbale panel, earthbag, cordwood, SIP (plywood+ecofiber), hempcrete+straw and energy efficient block. The influence of thermal inertia time, internal areal heat capacity, as well dimen-sionless index of thermal inertia D, the total thermal resistance of the walls Rtot-value, mass of the wall assembly and its cost have been taken into consideration as important influence factors. The multicriteria numerical assessment of envelope’s energy efficiency potential was performed by two popular methods – Analytic Hierarchy Process (AHP) as the subjective weighting method and Grey Relation Analysis (GRA) as the objective weighting method. Both of methods allow to arrange the alternatives and could be applied as decision support tools in decision making (DM) process of choosing the best alternative in terms of multi-criteria assessment. For more objective analysis, by taking into account the variety of physical and physical-mechanical parameters of the wall assembly material, the concept of generalized index of the envelope energy efficiency potential is proposed. Conducted research has shown that the best envelope type in terms of of generalized index of energy efficiency potential has the hempcrete wall and hemcrete+straw wall, almost three times smaller has the wall of the earthbags. The walls from adobe, cordwood and strawbale panels have practically the equal value of generalized index of energy efficiency potential. It could be observed that AHP method shown more inhomogeneous results, than GRA. The possible reason for that is the difference in evaluation attitude in techniques – AHP is considered as the subjective method with pairwise comparison matrixes, while GRA is objective method of comparison.
dc.format.extent48-62
dc.format.pages15
dc.identifier.citationApplication of AHP and GRA methods in Energy Efficiency Potential’s Assessment of Envelopes from Natural Materials / Yuriy Biks, Georgiy Ratushnyak, Olga Ratushnyak, Pavlo Ryapolov // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 48–62.
dc.identifier.citationenApplication of AHP and GRA methods in Energy Efficiency Potential’s Assessment of Envelopes from Natural Materials / Yuriy Biks, Georgiy Ratushnyak, Olga Ratushnyak, Pavlo Ryapolov // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 48–62.
dc.identifier.doidoi.org/10.23939/jtbp2020.02.048
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56588
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (2), 2020
dc.relation.referencesWang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis
dc.relation.referencesaid in sustainable energy decision-making. Renewable and sustainable energy reviews, 13(9), 2263–2278.
dc.relation.referencesdoi:10.1016/j.rser.2009.06.021.
dc.relation.referencesKheiri, F. (2018). A review on optimization methods applied in energy-efficient building geometry and
dc.relation.referencesenvelope design. Renewable and Sustainable Energy Reviews, 92, 897–920. doi: 10.1016/j.rser.2018.04.080
dc.relation.referencesShimray, B. A., Singh, K. M., & Mehta, R. K. (2017). A survey of multi-criteria decision making technique
dc.relation.referencesused in renewable energy planning. International Journal of Computer, 4523, 124–140.
dc.relation.referencesLiu, S., Yang, Y., & Forrest, J. (2017). Grey data analysis. Springer Singapore, Singapore. doi:10(1007), 978–981.
dc.relation.referencesWang, J. J., Jing, Y. Y., Zhang, C. F., Zhang, X. T., & Shi, G. H. (2008). Integrated evaluation of distributed
dc.relation.referencestriple-generation systems using improved grey incidence approach. Energy, 33(9), 1427–1437. doi: 10.1016/j.energy.2008.04.008.
dc.relation.referencesHopfe, C. J., Augenbroe, G. L., & Hensen, J. L. (2013). Multi-criteria decision making under uncertainty in
dc.relation.referencesbuilding performance assessment. Building and environment, 69, 81–90. doi: 10.1016/j.buildenv.2013.07.019.
dc.relation.referencesStazi, F. (2017). Thermal Inertia in Energy Efficient Building Envelopes. Butterworth-Heinemann. doi: 10.1016/B978-0-12-813970-7.00001-7.
dc.relation.referencesBläsi, W. (2001). Bauphysik. Bibliothek des technischen Wissens. 3 Auflage. Haan: Verlag Europa Lehrmittel.
dc.relation.referencesUkrainian National Standard. DSTU B.V. 2.6-189: 2013. (2014). Methods of choosing insulation material for
dc.relation.referencesinsulation of buildings. Kyiv, Ukraine: Ministry of Regional Development, Construction and Housing and
dc.relation.referencesCommunal Services of Ukraine, (in Ukrainian).
dc.relation.referencesUkrainian National Standard. DSTU-N B. V. 2.6-190: 2013. (2014). An instruction on the estimated estimation of
dc.relation.referencesheat resistance and heat recovery of fencing structures. Kyiv, Ukraine: Ministry of Regional Development,
dc.relation.referencesConstruction and Housing and Communal Services of Ukraine, (in Ukrainian).
dc.relation.referencesFilonenko, O. I., Yurin, O. I. (2015). Budivelna a teplofizyka ohorodzhuvalnykh konstruktsii budivel: navch.
dc.relation.referencesposibnyk (Construction and Thermal Physics of Building Enclosures: A manual). Poltava: Poltavskyi natsionalnyi
dc.relation.referencestekhnichnyi universytet im. Yuriia Kondratiuka (Poltava: Poltava National Technical University named after Yuri
dc.relation.referencesKondratyuk), (in Ukrainian).
dc.relation.referencesOsobennosti maloetazhnogo energoeffektivnogo ekologicheskogo stroitelstva v raznykh klimaticheskikh
dc.relation.referenceszonakh (Features of low-rise energy-efficient ecological construction in different climatic zones). Retrieved from
dc.relation.referenceshttp://www.itp.nsc.ru/conferences/mzhz_2017/files/Section_02.pdf#page=16 (in Russian).
dc.relation.referencesUkrainian Building Code. DBN V. 2.6-31: 2016. (2017). Thermal insulation of buildings. Kyiv, Ukraine:
dc.relation.referencesMinistry of Regional Development, Construction and Housing and Communal Services of Ukraine, (in Ukrainian).
dc.relation.referencesKorshunov, O., Zuev, V. (2011). Vremya teplovoy inertsiii termicheskoye soprotivleniye sloistykh sten (Time of
dc.relation.referencesthermal inertia and thermal resistance of multilayered walls). Energoresursosberezheniye i energoeffektivnost
dc.relation.references(Energy saving and energy efficiency), 4(40), 23–26, (in Russian).
dc.relation.referencesSaaty, T. L. (2009). (Prinyatiye resheniy pri zavisimostyakh i obratnіkh svyazyakh: Analiticheskiye seti: per. s
dc.relation.referencesangl) (Decision-making with dependencies and inverse connections: Analytical networks: Translated from English).
dc.relation.referencesMoscow: LIBROCOM Book House (in Russian).
dc.relation.referencesBiks, Y., Ratushnyak, G., & Ratushnyak, O. (2019). Energy performance assessment of envelopes from
dc.relation.referencesorganic materials. Architecture Civil Engineering Environment. No. 3: 55–67. doi: 0.21307/ACEE-2019-036.
dc.relation.referencesTabunshchikov, Yu. A. Brodach, M. M. (2002). Matematicheskoe modelirovanie i optimizaciya teplovoj effektivnosti
dc.relation.referenceszdanij (Mathematical modelling and optimization of thermal efficiency of buildings). Moscow: AVOK-PRESS (in
dc.relation.referencesRussian).
dc.relation.referencesISO 13786:2017. Thermal performance of building components ‒ Dynamic thermal characteristics ‒ Calculation
dc.relation.referencesmethods. Retrieved from: https://www.iso.org/ru/standard/65711.html
dc.relation.referencesA brief guide and free tool for the calculation of the thermal mass of building components. Retrieved from:
dc.relation.referenceshttps://www.htflux.com/en/free-calculation-tool-for-thermal-mass-of-building-components-iso-13786/
dc.relation.referencesClarke, J. A., Yaneske, P. P., Pinney, A. A. The Harmonisation of Thermal Properties of Building Materials.
dc.relation.referencesRetrieved from http://www.esru.strath.ac.uk/Documents/89/thermop_rep.pdf
dc.relation.referencesFareniuk, H. H. (2009). Osnovy zabezpechennia enerhoefektyvnosti budynkiv ta teplovoi nadiinosti
dc.relation.referencesohorodzhuvalnykh konstruktsii(Fundamentals of energy efficiency of buildings and thermal reliability of enclosing
dc.relation.referencesstructures). Kyiv: Hama-Prynt, 216. (in Ukrainian).
dc.relation.referencesSaulles, T. D. (2012). Thermal mass explained.
dc.relation.referencesDaniel, S. A. A., Pugazhenthi, R., Kumar, R., & Vijayananth, S. (2019). Multi objective prediction and
dc.relation.referencesoptimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and
dc.relation.referencesTaguchi-grey relational analysis. Defence Technology, 15(4), 545–556. doi: 10.1016/j.dt.2019.01.001.
dc.relation.referencesSarpkaya, C., & Sabir, E. C. (2016). Optimization of the sizing process with grey relational analysis. Fibres
dc.relation.references& Textiles in Eastern Europe, (1 (115)), 49–55. doi: 10.5604/12303666.1172087.
dc.relation.referencesLin, Y., & Liu, S. (2004, October). A historical introduction to grey systems theory. In 2004 IEEE International
dc.relation.referencesConference on Systems, Man and Cybernetics(IEEE Cat. No. 04CH37583) (Vol. 3, pp. 2403–2408). IEEE.
dc.relation.referencesBiks, Y. et al. (2019). Patent of Ukraine 130276. Kyiv: State Patent Office of Ukraine.
dc.relation.referencesKulichenko, I. I. (2013). Ekonomichna efektyvnist vykorystannia mistsevykh ekolohichnykh materialiv v
dc.relation.referencesmalopoverkhovomu budivnytstvi dostupnoho zhytla (Economic efficiency of using local environmental materials in
dc.relation.referenceslow-rise construction of affordable housing). Stroytelstvo. Materyalovedenye. Mashynostroenye. Seryia: Innovatsyonnye
dc.relation.referencestekhnolohyy zhyznennoho tsykla obiectov zhylyshchno-hrazhdanskoho, promyshlennoho i transportnoho naznachenyia
dc.relation.references(Construction. Material science. Mechanical engineering. Series: Innovative technologies of the life cycle of object), 69, 257–264, (in Ukrainian).
dc.relation.referencesenWang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis
dc.relation.referencesenaid in sustainable energy decision-making. Renewable and sustainable energy reviews, 13(9), 2263–2278.
dc.relation.referencesendoi:10.1016/j.rser.2009.06.021.
dc.relation.referencesenKheiri, F. (2018). A review on optimization methods applied in energy-efficient building geometry and
dc.relation.referencesenenvelope design. Renewable and Sustainable Energy Reviews, 92, 897–920. doi: 10.1016/j.rser.2018.04.080
dc.relation.referencesenShimray, B. A., Singh, K. M., & Mehta, R. K. (2017). A survey of multi-criteria decision making technique
dc.relation.referencesenused in renewable energy planning. International Journal of Computer, 4523, 124–140.
dc.relation.referencesenLiu, S., Yang, Y., & Forrest, J. (2017). Grey data analysis. Springer Singapore, Singapore. doi:10(1007), 978–981.
dc.relation.referencesenWang, J. J., Jing, Y. Y., Zhang, C. F., Zhang, X. T., & Shi, G. H. (2008). Integrated evaluation of distributed
dc.relation.referencesentriple-generation systems using improved grey incidence approach. Energy, 33(9), 1427–1437. doi: 10.1016/j.energy.2008.04.008.
dc.relation.referencesenHopfe, C. J., Augenbroe, G. L., & Hensen, J. L. (2013). Multi-criteria decision making under uncertainty in
dc.relation.referencesenbuilding performance assessment. Building and environment, 69, 81–90. doi: 10.1016/j.buildenv.2013.07.019.
dc.relation.referencesenStazi, F. (2017). Thermal Inertia in Energy Efficient Building Envelopes. Butterworth-Heinemann. doi: 10.1016/B978-0-12-813970-7.00001-7.
dc.relation.referencesenBläsi, W. (2001). Bauphysik. Bibliothek des technischen Wissens. 3 Auflage. Haan: Verlag Europa Lehrmittel.
dc.relation.referencesenUkrainian National Standard. DSTU B.V. 2.6-189: 2013. (2014). Methods of choosing insulation material for
dc.relation.referenceseninsulation of buildings. Kyiv, Ukraine: Ministry of Regional Development, Construction and Housing and
dc.relation.referencesenCommunal Services of Ukraine, (in Ukrainian).
dc.relation.referencesenUkrainian National Standard. DSTU-N B. V. 2.6-190: 2013. (2014). An instruction on the estimated estimation of
dc.relation.referencesenheat resistance and heat recovery of fencing structures. Kyiv, Ukraine: Ministry of Regional Development,
dc.relation.referencesenConstruction and Housing and Communal Services of Ukraine, (in Ukrainian).
dc.relation.referencesenFilonenko, O. I., Yurin, O. I. (2015). Budivelna a teplofizyka ohorodzhuvalnykh konstruktsii budivel: navch.
dc.relation.referencesenposibnyk (Construction and Thermal Physics of Building Enclosures: A manual). Poltava: Poltavskyi natsionalnyi
dc.relation.referencesentekhnichnyi universytet im. Yuriia Kondratiuka (Poltava: Poltava National Technical University named after Yuri
dc.relation.referencesenKondratyuk), (in Ukrainian).
dc.relation.referencesenOsobennosti maloetazhnogo energoeffektivnogo ekologicheskogo stroitelstva v raznykh klimaticheskikh
dc.relation.referencesenzonakh (Features of low-rise energy-efficient ecological construction in different climatic zones). Retrieved from
dc.relation.referencesenhttp://www.itp.nsc.ru/conferences/mzhz_2017/files/Section_02.pdf#page=16 (in Russian).
dc.relation.referencesenUkrainian Building Code. DBN V. 2.6-31: 2016. (2017). Thermal insulation of buildings. Kyiv, Ukraine:
dc.relation.referencesenMinistry of Regional Development, Construction and Housing and Communal Services of Ukraine, (in Ukrainian).
dc.relation.referencesenKorshunov, O., Zuev, V. (2011). Vremya teplovoy inertsiii termicheskoye soprotivleniye sloistykh sten (Time of
dc.relation.referencesenthermal inertia and thermal resistance of multilayered walls). Energoresursosberezheniye i energoeffektivnost
dc.relation.referencesen(Energy saving and energy efficiency), 4(40), 23–26, (in Russian).
dc.relation.referencesenSaaty, T. L. (2009). (Prinyatiye resheniy pri zavisimostyakh i obratnikh svyazyakh: Analiticheskiye seti: per. s
dc.relation.referencesenangl) (Decision-making with dependencies and inverse connections: Analytical networks: Translated from English).
dc.relation.referencesenMoscow: LIBROCOM Book House (in Russian).
dc.relation.referencesenBiks, Y., Ratushnyak, G., & Ratushnyak, O. (2019). Energy performance assessment of envelopes from
dc.relation.referencesenorganic materials. Architecture Civil Engineering Environment. No. 3: 55–67. doi: 0.21307/ACEE-2019-036.
dc.relation.referencesenTabunshchikov, Yu. A. Brodach, M. M. (2002). Matematicheskoe modelirovanie i optimizaciya teplovoj effektivnosti
dc.relation.referencesenzdanij (Mathematical modelling and optimization of thermal efficiency of buildings). Moscow: AVOK-PRESS (in
dc.relation.referencesenRussian).
dc.relation.referencesenISO 13786:2017. Thermal performance of building components ‒ Dynamic thermal characteristics ‒ Calculation
dc.relation.referencesenmethods. Retrieved from: https://www.iso.org/ru/standard/65711.html
dc.relation.referencesenA brief guide and free tool for the calculation of the thermal mass of building components. Retrieved from:
dc.relation.referencesenhttps://www.htflux.com/en/free-calculation-tool-for-thermal-mass-of-building-components-iso-13786/
dc.relation.referencesenClarke, J. A., Yaneske, P. P., Pinney, A. A. The Harmonisation of Thermal Properties of Building Materials.
dc.relation.referencesenRetrieved from http://www.esru.strath.ac.uk/Documents/89/thermop_rep.pdf
dc.relation.referencesenFareniuk, H. H. (2009). Osnovy zabezpechennia enerhoefektyvnosti budynkiv ta teplovoi nadiinosti
dc.relation.referencesenohorodzhuvalnykh konstruktsii(Fundamentals of energy efficiency of buildings and thermal reliability of enclosing
dc.relation.referencesenstructures). Kyiv: Hama-Prynt, 216. (in Ukrainian).
dc.relation.referencesenSaulles, T. D. (2012). Thermal mass explained.
dc.relation.referencesenDaniel, S. A. A., Pugazhenthi, R., Kumar, R., & Vijayananth, S. (2019). Multi objective prediction and
dc.relation.referencesenoptimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and
dc.relation.referencesenTaguchi-grey relational analysis. Defence Technology, 15(4), 545–556. doi: 10.1016/j.dt.2019.01.001.
dc.relation.referencesenSarpkaya, C., & Sabir, E. C. (2016). Optimization of the sizing process with grey relational analysis. Fibres
dc.relation.referencesen& Textiles in Eastern Europe, (1 (115)), 49–55. doi: 10.5604/12303666.1172087.
dc.relation.referencesenLin, Y., & Liu, S. (2004, October). A historical introduction to grey systems theory. In 2004 IEEE International
dc.relation.referencesenConference on Systems, Man and Cybernetics(IEEE Cat. No. 04CH37583) (Vol. 3, pp. 2403–2408). IEEE.
dc.relation.referencesenBiks, Y. et al. (2019). Patent of Ukraine 130276. Kyiv: State Patent Office of Ukraine.
dc.relation.referencesenKulichenko, I. I. (2013). Ekonomichna efektyvnist vykorystannia mistsevykh ekolohichnykh materialiv v
dc.relation.referencesenmalopoverkhovomu budivnytstvi dostupnoho zhytla (Economic efficiency of using local environmental materials in
dc.relation.referencesenlow-rise construction of affordable housing). Stroytelstvo. Materyalovedenye. Mashynostroenye. Seryia: Innovatsyonnye
dc.relation.referencesentekhnolohyy zhyznennoho tsykla obiectov zhylyshchno-hrazhdanskoho, promyshlennoho i transportnoho naznachenyia
dc.relation.referencesen(Construction. Material science. Mechanical engineering. Series: Innovative technologies of the life cycle of object), 69, 257–264, (in Ukrainian).
dc.relation.urihttp://www.itp.nsc.ru/conferences/mzhz_2017/files/Section_02.pdf#page=16
dc.relation.urihttps://www.iso.org/ru/standard/65711.html
dc.relation.urihttps://www.htflux.com/en/free-calculation-tool-for-thermal-mass-of-building-components-iso-13786/
dc.relation.urihttp://www.esru.strath.ac.uk/Documents/89/thermop_rep.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Biks Y., Ratushnyak G., Ratushnyak O., Ryapolov P., 2020
dc.subjectМАІ
dc.subjectпотенціал енергоефективності
dc.subjectогороджувальні конструкції
dc.subjectметод с узагальнений індекс потенціалу
dc.subjectСРА
dc.subjectбагатокритеріальна оцінка
dc.subjectтеплотехнічні характеристики
dc.subjectAHP method
dc.subjectenergy efficiency potential
dc.subjectenvelope structures
dc.subjectGRA method
dc.subjectmulticriterial assessment
dc.subjectthermal performance
dc.titleApplication of AHP and GRA methods in Energy Efficiency Potential’s Assessment of Envelopes from Natural Materials
dc.title.alternativeВикористання методу аналізу ієрархій (AHP) та сірого реляційного аналізу (GRA) для оцінки енергоефективності огороджувальних конструкцій з природних матеріалів
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2020v2n2_Biks_Y-Application_of_AHP_and_GRA_methods_48-62.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2020v2n2_Biks_Y-Application_of_AHP_and_GRA_methods_48-62__COVER.png
Size:
478.37 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.08 KB
Format:
Plain Text
Description: