Technology of granulated ceramic aggregate for concrete based on clay of Atyrau deposit of Western Kazakhstan

dc.citation.epage171
dc.citation.issue2
dc.citation.journalTitleАрхітектурні дослідження
dc.citation.spage162
dc.contributor.affiliationЗахідно-Казахстанський сільськогосподарський університет імені Жангір хана
dc.contributor.affiliationЗахідно-Казахстанський сільськогосподарський університет імені Жангір хана
dc.contributor.affiliationЗахідно-Казахстанський сільськогосподарський університет імені Жангір хана
dc.contributor.affiliationКизилординський університет імені Коркит ата
dc.contributor.affiliationЗахідно-Казахстанський сільськогосподарський університет імені Жангір хана
dc.contributor.affiliationWest Kazakhstan Agricultural University named after Zhangir khan
dc.contributor.affiliationWest Kazakhstan Agricultural University named after Zhangir khan
dc.contributor.affiliationWest Kazakhstan Agricultural University named after Zhangir khan
dc.contributor.affiliationCoordination Korkyt ata Kyzylorda University
dc.contributor.affiliationWest Kazakhstan Agricultural University named after Zhangir khan
dc.contributor.authorМонтаєв, Сарсенбек
dc.contributor.authorДосов, Каржаубай
dc.contributor.authorАділова, Нургуль
dc.contributor.authorМонтаєва, Айнур
dc.contributor.authorАлмагамбетова, Майра
dc.contributor.authorMontayev, Sarsenbek
dc.contributor.authorDosov, Karzhaubai
dc.contributor.authorAdilova, Nurgul
dc.contributor.authorMontayeva, Ainur
dc.contributor.authorAlmagambetova, Maira
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-12T10:03:58Z
dc.date.created2024-06-07
dc.date.issued2024-06-07
dc.description.abstractМетою цього дослідження було вивчення технології гранульованого керамічного заповнювача на основі глини Атирауського родовища, з акцентом на поліпшення механічних і термічних властивостей бетону для досягнення найкращої ефективності та стійкості в будівництві. Методи, використані в цьому дослідженні, включали хімічний аналіз, рентгенофазовий аналіз, електронну мікроскопію. За допомогою цих методів були визначені фізико-механічні та хіміко-мінералогічні характеристики керамічного заповнювача. У дослідженні представлені шляхи вирішення проблеми забезпечення будівельної галузі Західно-Казахстанської області. Виділено ключові характеристики матеріалу, його структурні особливості та вплив на властивості бетону. У дослідженні представлені помилки, що виникають при застосуванні технології гранульованого керамічного заповнювача, і виявлені причини їх виникнення. Проаналізовано функціонування технології, що є критично важливим для визначення її ефективності, потенціалу для розвитку та виявлення можливих покращень у роботі відповідних галузей. Обговорено оцінку експлуатаційних характеристик бетону з гранульованим керамічним заповнювачем, обґрунтування застосування цього матеріалу, обмеження у використанні та вплив цих обмежень на якість кінцевого продукту. В результаті дослідження були запропоновані рекомендації, спрямовані на оптимізацію процесу застосування гранульованого керамічного заповнювача, підвищення надійності бетону та врахування низки факторів, що впливають на виробничі та експлуатаційні аспекти
dc.description.abstractThe purpose of this study was to investigate the technology of granular ceramic aggregate based on clay of Atyrau deposit, with a focus on improving the mechanical and thermal properties of concrete to achieve best efficiency and sustainability in construction. The methods employed in this study included chemical analysis, X-ray phase analysis, electron microscopy. Using these methods, the physical-mechanical and chemical-mineralogical characteristics of the ceramic aggregate were determined. The study presents solutions to the problem of providing the construction industry of the West Kazakhstan region. It highlighted the key characteristics of the material, its structural features, and its effect on concrete properties. The study presented the errors occurring during the application of granular ceramic aggregate technology and identified the reasons for their occurrence. The functioning of the technology was analysed, which is critical for determining its efficiency, its potential for development, and for identifying possible improvements in the operation of the respective industries. The evaluation of the performance of concrete with granular ceramic aggregate, the rationale for the use of this material, the limitations in use, and the impact of these limitations on the quality of the final product were discussed. The study proposed recommendations aimed at optimising the application process of granular ceramic aggregate, improving the reliability of concrete, and considering a range of factors affecting production and operational aspects
dc.format.extent162-171
dc.format.pages10
dc.identifier.citationTechnology of granulated ceramic aggregate for concrete based on clay of Atyrau deposit of Western Kazakhstan / Sarsenbek Montayev, Karzhaubai Dosov, Nurgul Adilova, Ainur Montayeva, Maira Almagambetova // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 2. — P. 162–171.
dc.identifier.citation2015Technology of granulated ceramic aggregate for concrete based on clay of Atyrau deposit of Western Kazakhstan / Montayev S. та ін. // Architectural Studies, Lviv. 2024. Vol 10. No 2. P. 162–171.
dc.identifier.citationenAPAMontayev, S., Dosov, K., Adilova, N., Montayeva, A., & Almagambetova, M. (2024). Technology of granulated ceramic aggregate for concrete based on clay of Atyrau deposit of Western Kazakhstan. Architectural Studies, 10(2), 162-171. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOMontayev S., Dosov K., Adilova N., Montayeva A., Almagambetova M. (2024) Technology of granulated ceramic aggregate for concrete based on clay of Atyrau deposit of Western Kazakhstan. Architectural Studies (Lviv), vol. 10, no 2, pp. 162-171.
dc.identifier.doi10.56318/as/2.2024.162
dc.identifier.issn2411-801X ; 2786-7374 (e-ISSN)
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/118768
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofАрхітектурні дослідження, 2 (10), 2024
dc.relation.ispartofArchitectural Studies, 2 (10), 2024
dc.relation.referencesen[1] Astakhova, N., & Astakhov, V. (2024). Protective properties of slag and pumice concrete and slag concrete towards steel reinforcement. Mining Journal of Kryvyi Rih National University, 22(1), 73-77. doi: 10.31721/2306-5435-2024-1-112-73-77.
dc.relation.referencesen[2] Bandura, L., Pałka, K., Leśniak, M., & Franus, W. (2024). Microstructural characteristics and the influence of the chemical composition of the raw material mixture on the physical and chemical characteristics of waste ceramic aggregates. Journal of Building Engineering, 84, article number 108376. doi: 10.1016/j.jobe.2023.108376.
dc.relation.referencesen[3] Bekkaliev, N., Shakeshev, B., & Chumachenko, N. (2021). Use of secondary resources for the production of building materials. Bulletin of West Kazakhstan Innovative Technological University, 3(19), 10-13.
dc.relation.referencesen[4] Bumanis, G., Bajare, D., Korjakins, A., & Vaičiukynienė, D. (2022). Sulfate and freeze-thaw resistance of porous geopolymer based on waste clay and aluminum salt slag. Minerals, 12(9), article number 1140. doi: 10.3390/ min12091140.
dc.relation.referencesen[5] Cantero, B., Sainz-Aja, J., Yoris, A., Medina, C., & Thomas, C. (2021). Resonance fatigue behaviour of concretes with recycled cement and aggregate. Applied Sciences, 11(11), article number 5045. doi: 10.3390/app11115045.
dc.relation.referencesen[6] Dos Reis, G.S., Quattrone, M., Ambros, W.M., Grigore Cazacliu, B., & Hoffmann Sampaio, C. (2021). Current applications of recycled aggregates from construction and demolition: A review. Materials, 14(7), article number1700. doi: 10.3390/ma14071700.
dc.relation.referencesen[7] Ghonaim, S., & Morsy, R. (2023). Utilization of ceramic waste material as cement substitution in concrete. Buildings,13(8), article number 2067. doi: 10.3390/buildings13082067.
dc.relation.referencesen[8] Hotovkin, A. (2023). Complex use of metallurgical slags in the production of building materials. (Master’s dissertation, Zaporizhzhia National University, Zaporizhzhia, Ukraine).
dc.relation.referencesen[9] Jones, L., & Urbano Gutiérrez, R. (2023). Circular ceramics: Mapping UK mineral waste. Resources, Conservation and Recycling, 190, article number 106830. doi: 10.1016/j.resconrec.2022.106830.
dc.relation.referencesen[10] Kanagaraj, B., Anand, N., Praveen, B., Kandasami, S., Lubloy, E., & Naser, M.Z. (2023). Physical characteristics and mechanical properties of a sustainable lightweight geopolymer based self-compacting concrete with expanded clay aggregates. Developments in the Built Environment, 13, article number 100115. doi: 10.1016/j.dibe.2022.100115.
dc.relation.referencesen[11] Khrystych, O. (2023). Fillers for construction mixtures from recycling products of solid inorganic waste. Modern Technologies, Materials and Structures in Construction, 20(2), 49-55. doi: 10.31649/2311-1429-2023-2-49-55.
dc.relation.referencesen[12] Kolesnikova, I., Suvorov, A., & Bekturganova, N. (2023). Analysis of prospects for the use of local raw materials for the production of self-sealing concretes in the Republic of Kazakhstan. Bulletin of Kazakh Leading Academy of Architecture and Construction, 4(90), 110-124. doi: 10.51488/1680-080X/2023.4-08.
dc.relation.referencesen[13] Kruglov, O., Menshov, O., Horoshkova, L., & Kruhlov, B. (2023). Magnetic susceptibility of inclined soils and its relationship with some agronomic indicators. Plant and Soil Science, 14(1), 39-50. doi: 10.31548/plant1.2023.39.
dc.relation.referencesen[14] Kutsenko, A., & Kutsenko, O. (2022). Effect of reinforcement on the crack resistance of concrete slabs. Machinery & Energetics, 13(3), 34-42. doi: 10.31548/machenergy.13(3).2022.34-42.
dc.relation.referencesen[15] Linchenko, V., Zhuk, D., Lysenko, N., Stepenko, S., & Zhuk, I. (2022). Green energy: Problems of environmental protection. Ecological Safety and Balanced Use of Resources, 13(2), 58-68. doi: 10.31471/2415-3184-2022-2(26)-58-68.
dc.relation.referencesen[16] Lotero, A., Moncaleano, K.J., & Consoli, N.C. (2021). Alkali-activated red ceramic mixture with waste lime carbide: An alternative alkaline cement made at room temperature. Journal of Building Engineering, 65, article number 105663. doi: 10.1016/j.jobe.2022.105663.
dc.relation.referencesen[17] Lu, N., Chen, H., Chen, J., & Cao, Y.-F. (2023). Ceramic aggregate material formulated with MSWI fly ash and fuel ash for use as filter media. Minerals, 13(7), article number 845. doi: 10.3390/min13070845.
dc.relation.referencesen[18] Mahmoodi, O., Siad, H., Lachemi, M., Dadsetan, S., & Sahmaran, M. (2023). Extensive rheological evaluation of geopolymer solutions containing the maximum amount of recycled concrete as precursors and aggregates. Construction and Building Materials, 390, article number 131801. doi: 10.1016/j.conbuildmat.2023.131801.
dc.relation.referencesen[19] Martins, N.P., Srivastava, S., Simao, F.V., Niu, H., Perumal, P., Snellings, R., Illikainen, M., Chambart, H., & Habert, G. (2021). Exploring the potential for utilization of medium and highly sulfidic mine tailings in construction materials: A review. Sustainability, 13(21), article number 12150. doi: 10.3390/su132112150.
dc.relation.referencesen[20] Migunthanna, J., Rajeev, P., & Sanjayan, J. (2022). Waste clay bricks as a geopolymer binder for pavement construction. Sustainability, 14(11), article number 6456. doi: 10.3390/su14116456.
dc.relation.referencesen[21] Montayev, S., & Majit, D. (2021). Ceramic aggregate production perspective for the construction industry. Science and Education, 4(65), 230-238. doi: 10.52578/2305-9397-2021-1-4-230-238.
dc.relation.referencesen[22] Montayev, S., & Ryskaliev, M. (2020). Rational technology of ceramdor based on the processing of clay rocks for thermal insulation and structural concrete and road construction: Recommendation. Uralsk: West Kazakhstan Agricultural University named after Zhangir khan.
dc.relation.referencesen[23] Moreno-Maroto, J.M., et al. (2023). Can statistical methods optimize complex multicomponent mixtures for sintering ceramic granular materials? A case of success with synthetic aggregates. Ceramics International, 49(14(B)), 24195-24206. doi: 10.1016/j.ceramint.2022.09.220.
dc.relation.referencesen[24] Nenastina, T., Berezhna, K., Sakhnenko, M., & Buhaievskyi, S. (2024). Degradation of reinforced concrete construction of bridge structures: Corrosion aspect. Materials Science, 59(5), 538-545. doi: 10.1007/s11003-024-00809-3.
dc.relation.referencesen[25] Nguyen, N.T. (2023). Experimental investigation of creep behaviour of saturated soft clay subjected static loading. International Journal of GEOMATE, 25(108), 81-88. doi: 10.21660/2023.108.3894.
dc.relation.referencesen[26] Ryltsev, Ye. (2017). Materials science: A course of lectures. Kyiv: National Academy of Management Personnel of Culture and Arts.
dc.relation.referencesen[27] Shumakov, I., Miroshnikov, V., Younis, B., Buhaievskyi, S., & Bratishko, S. (2024). Improvement of concrete parameters by the method of sodium silicates impregnation by internal vacuum tamping. IOP Conference Series: Earth and Environmental Science, 1376, article number 012031. doi: 10.1088/1755-1315/1376/1/012031.
dc.relation.referencesen[28] Sithole, N.T., & Mashifana, T. (2020). Geosynthesis of building and construction materials through alkaline activation of granulated blast furnace slag. Construction and Building Materials, 264, article number 120712. doi: 10.1016/j. conbuildmat.2020.120712.
dc.relation.referencesen[29] Soralump, S., Shah, A., Chaithong, T., Sakai, G., & Boonyatee, T. (2023). Soil strength estimation using screw driving sounding technique for Bangkok clay layers. International Journal of GEOMATE, 25(111), 193-201.doi: 10.21660/2023.111.3368.
dc.relation.referencesen[30] State Standard of the Republic of Kazakhstan (ST RK) No. 992-96 “State System of Standardisation of the Republic of Kazakhstan. Standardisation of Services. Basic Provisions”. (1996, September). Retrieved from https://online.zakon. kz/Document/?doc_id=1051253&pos=2;-104#pos=2;-104.
dc.relation.referencesen[31] Tassybekov, Z., Bekenov, T., & Nussupbek, Z. (2020). Assessment of compaction of the road base from repeated exposure to frequently repeated loads of self-propelled road roller. In E. Ginters, M. Ruiz Estrada & M. Piera Eroles (Eds.), ICTE in transportation and logistics 2019 (pp. 164-170). Cham: Springer. doi: 10.1007/978-3-030-39688-6_22.
dc.relation.urihttps://online.zakon
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectбудівництво
dc.subjectприродні ресурси
dc.subjectексплуатація
dc.subjectкомпонент
dc.subjectінженерна система
dc.subjectconstruction
dc.subjectnatural resources
dc.subjectexploitation
dc.subjectcomponent
dc.subjectengineering system
dc.subject.udc666.9
dc.titleTechnology of granulated ceramic aggregate for concrete based on clay of Atyrau deposit of Western Kazakhstan
dc.title.alternativeТехнологія гранульованого керамічного заповнювача для бетона на основі глин Атирауського родовища Західного Казахстану
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v10n2_Montayev_S-Technology_of_granulated_162-171.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.96 KB
Format:
Plain Text
Description: