Meat quality research using classification algorithms
dc.citation.epage | 32 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Вимірювальна техніка та метрологія | |
dc.citation.spage | 29 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Kutyansky, Ostap | |
dc.contributor.author | Pasternak, Volodymyr | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-13T08:43:20Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | The food industry is going through constant improvements and is subject to analyzing consumer needs, product quality research is essential to striking this balance. In this regard, meat quality, the most essential food category, should be studied with unbiased methods that give precise and correct results. Classification algorithms are considered one of the main components of developing an objective and reliable method of meat quality assessment. Such algorithms imply meat analysis and classification automation with many parameters in mind, which eventually gives a chance to make quick and correct decisions concerning its quality. | |
dc.format.extent | 29-32 | |
dc.format.pages | 4 | |
dc.identifier.citation | Kutyansky O. Meat quality research using classification algorithms / Kutyansky Ostap, Pasternak Volodymyr // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 2. — P. 29–32. | |
dc.identifier.citationen | Kutyansky O. Meat quality research using classification algorithms / Kutyansky Ostap, Pasternak Volodymyr // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 2. — P. 29–32. | |
dc.identifier.doi | doi.org/10.23939/istcmtm2024.02.029 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64145 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вимірювальна техніка та метрологія, 2 (85), 2024 | |
dc.relation.ispartof | Measuring Equipment and Metrology, 2 (85), 2024 | |
dc.relation.references | [1] “Digital 2024: Global overview report – dataReportal – global digital insights”. DataReportal – Global Digital Insights. Date of access: April 22. 2024. [Online]. Available: https://datareportal.com/reports/digital-2024-global-overview-report. | |
dc.relation.references | [2] C. Ruedt, M. Gibis, and J. Weiss, “Meat color and iridescence: Origin, analysis, and approaches to modulation”, Comprehensive Rev. Food Sci. Food Saf., Jun. 2023. Accessed: May 2, 2024. [Online]. Available: https://doi.org/10.1111/1541-4337.13191 | |
dc.relation.references | [3] O. R. Kutyansky and M. M. Mykyichuk, “Application of classification algorithms in quality control of meat products,” in Abstr. XI Int. Scientific Practical Conf., Florence, Italy, Mar. 18-20, 2024. 2024. pp. 341-342. [Online]. Available: URL: https://eu-conf.com/en/events/quality-management-in-education-and-industry-experience-problems-and-prospects/ | |
dc.relation.references | [4] Z. Keita. “Classification in machine learning: A guide for beginners"”. Learn Data Science and AI Online | DataCamp. Date of access: April 22. 2024. [Online]. Available: https://www.datacamp.com/blog/classification-machine-learning. | |
dc.relation.references | [5] “Albumentations Documentation - What is image augmentation”. Albumentations: fast and flexible image augmentations. Date of access: April 22. 2024. [Online]. Available: https://albumentations.ai/docs/introduction/image_augmentation/. | |
dc.relation.references | [6] I. M. Kobasa, L. M. Cheban, M. M. Vorobets, V. H. Yukalo, and M. Kukhtyn, Chemical and microbiological analysis of food products. Chernivtsi: Cherniv. nats. un-t, 2014. [Online]. Available: https://archer.chnu.edu.ua/bitstream/handle/123456789/3704/%D0%A5%D1%96%D0%BC%D1%96%D1%87%D0%BD% | |
dc.relation.references | [7] I. F. Ovchynnikova, S. O. Dubinina, T. M. Letuta, M. O. Naumenko, and A. A. Dubinina, Methods for determining the falsification of goods. Kyiv: Pub.dim “Professional"”, 2010. [Online]. Avalilable: https://library.nlu.edu.ua/POLN_TEXT/CUL/24-Metodi%20viznachennya%20falsif%20tovariv-Dubinina.pdf | |
dc.relation.references | [8] N. Huynh. “Understanding loss functions for classification”. Medium. Date of access: April 22. 2024. [Online]. Available: https://medium.com/@nghihuynh_37300/understanding-loss-functions-for-classification-81c19ee72c2a | |
dc.relation.references | [9] M. Dawood. “Introduction to classification algorithms”. Medium. Date of access: April 22. 2024. [Online]. Available: https://muhammaddawoodaslam.medium.com/introduction-to-classification-algorithms-8e42b37adebf. | |
dc.relation.references | [10] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification algorithms based on convolutional neural networks”, Remote Sens., vol. 13, no. 22, p. 4712, Nov. 2021. Accessed: May 2, 2024. [Online]. Available: https://doi.org/10.3390/rs13224712. | |
dc.relation.references | [11] M. Aladhadh, “A review of modern methods for the detection of foodborne pathogens”, Microorganisms, vol. 11, no. 5, p. 1111, Apr. 2023. Accessed: May 2, 2024. [Online]. Available: https://doi.org/10.3390/microorganisms11051111. | |
dc.relation.references | [12] C. Xu, L. Kong, H. Gao, X. Cheng, and X. Wang, “A Review of Current Bacterial Resistance to Antibiotics in Food Animals”, Frontiers Microbiol., vol. 13, May 2022. Accessed: May 2, 2024. [Online]. Available: https://doi.org/10.3389/fmicb.2022.822689. | |
dc.relation.references | [13] M. Hayes, “Measuring protein content in food: An overview of methods”, Foods, vol. 9, no. 10, p. 1340, Sep. 2020. Accessed: May 2, 2024.[Online]. Available: https://doi.org/10.3390/foods9101340. | |
dc.relation.referencesen | [1] "Digital 2024: Global overview report – dataReportal – global digital insights". DataReportal – Global Digital Insights. Date of access: April 22. 2024. [Online]. Available: https://datareportal.com/reports/digital-2024-global-overview-report. | |
dc.relation.referencesen | [2] C. Ruedt, M. Gibis, and J. Weiss, "Meat color and iridescence: Origin, analysis, and approaches to modulation", Comprehensive Rev. Food Sci. Food Saf., Jun. 2023. Accessed: May 2, 2024. [Online]. Available: https://doi.org/10.1111/1541-4337.13191 | |
dc.relation.referencesen | [3] O. R. Kutyansky and M. M. Mykyichuk, "Application of classification algorithms in quality control of meat products," in Abstr. XI Int. Scientific Practical Conf., Florence, Italy, Mar. 18-20, 2024. 2024. pp. 341-342. [Online]. Available: URL: https://eu-conf.com/en/events/quality-management-in-education-and-industry-experience-problems-and-prospects/ | |
dc.relation.referencesen | [4] Z. Keita. "Classification in machine learning: A guide for beginners"". Learn Data Science and AI Online | DataCamp. Date of access: April 22. 2024. [Online]. Available: https://www.datacamp.com/blog/classification-machine-learning. | |
dc.relation.referencesen | [5] "Albumentations Documentation - What is image augmentation". Albumentations: fast and flexible image augmentations. Date of access: April 22. 2024. [Online]. Available: https://albumentations.ai/docs/introduction/image_augmentation/. | |
dc.relation.referencesen | [6] I. M. Kobasa, L. M. Cheban, M. M. Vorobets, V. H. Yukalo, and M. Kukhtyn, Chemical and microbiological analysis of food products. Chernivtsi: Cherniv. nats. un-t, 2014. [Online]. Available: https://archer.chnu.edu.ua/bitstream/handle/123456789/3704/%D0%A5%D1%96%D0%BC%D1%96%D1%87%D0%BD% | |
dc.relation.referencesen | [7] I. F. Ovchynnikova, S. O. Dubinina, T. M. Letuta, M. O. Naumenko, and A. A. Dubinina, Methods for determining the falsification of goods. Kyiv: Pub.dim "Professional"", 2010. [Online]. Avalilable: https://library.nlu.edu.ua/POLN_TEXT/CUL/24-Metodi%20viznachennya%20falsif%20tovariv-Dubinina.pdf | |
dc.relation.referencesen | [8] N. Huynh. "Understanding loss functions for classification". Medium. Date of access: April 22. 2024. [Online]. Available: https://medium.com/@nghihuynh_37300/understanding-loss-functions-for-classification-81c19ee72c2a | |
dc.relation.referencesen | [9] M. Dawood. "Introduction to classification algorithms". Medium. Date of access: April 22. 2024. [Online]. Available: https://muhammaddawoodaslam.medium.com/introduction-to-classification-algorithms-8e42b37adebf. | |
dc.relation.referencesen | [10] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, "Review of image classification algorithms based on convolutional neural networks", Remote Sens., vol. 13, no. 22, p. 4712, Nov. 2021. Accessed: May 2, 2024. [Online]. Available: https://doi.org/10.3390/rs13224712. | |
dc.relation.referencesen | [11] M. Aladhadh, "A review of modern methods for the detection of foodborne pathogens", Microorganisms, vol. 11, no. 5, p. 1111, Apr. 2023. Accessed: May 2, 2024. [Online]. Available: https://doi.org/10.3390/microorganisms11051111. | |
dc.relation.referencesen | [12] C. Xu, L. Kong, H. Gao, X. Cheng, and X. Wang, "A Review of Current Bacterial Resistance to Antibiotics in Food Animals", Frontiers Microbiol., vol. 13, May 2022. Accessed: May 2, 2024. [Online]. Available: https://doi.org/10.3389/fmicb.2022.822689. | |
dc.relation.referencesen | [13] M. Hayes, "Measuring protein content in food: An overview of methods", Foods, vol. 9, no. 10, p. 1340, Sep. 2020. Accessed: May 2, 2024.[Online]. Available: https://doi.org/10.3390/foods9101340. | |
dc.relation.uri | https://datareportal.com/reports/digital-2024-global-overview-report | |
dc.relation.uri | https://doi.org/10.1111/1541-4337.13191 | |
dc.relation.uri | https://eu-conf.com/en/events/quality-management-in-education-and-industry-experience-problems-and-prospects/ | |
dc.relation.uri | https://www.datacamp.com/blog/classification-machine-learning | |
dc.relation.uri | https://albumentations.ai/docs/introduction/image_augmentation/ | |
dc.relation.uri | https://archer.chnu.edu.ua/bitstream/handle/123456789/3704/%D0%A5%D1%96%D0%BC%D1%96%D1%87%D0%BD% | |
dc.relation.uri | https://library.nlu.edu.ua/POLN_TEXT/CUL/24-Metodi%20viznachennya%20falsif%20tovariv-Dubinina.pdf | |
dc.relation.uri | https://medium.com/@nghihuynh_37300/understanding-loss-functions-for-classification-81c19ee72c2a | |
dc.relation.uri | https://muhammaddawoodaslam.medium.com/introduction-to-classification-algorithms-8e42b37adebf | |
dc.relation.uri | https://doi.org/10.3390/rs13224712 | |
dc.relation.uri | https://doi.org/10.3390/microorganisms11051111 | |
dc.relation.uri | https://doi.org/10.3389/fmicb.2022.822689 | |
dc.relation.uri | https://doi.org/10.3390/foods9101340 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | Meat quality assessment | |
dc.subject | Classification algorithms | |
dc.subject | Machine learning | |
dc.subject | Classification | |
dc.title | Meat quality research using classification algorithms | |
dc.type | Article |
Files
License bundle
1 - 1 of 1