Computer visual inspection of pear quality
dc.citation.epage | 31 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Вимірювальна техніка та метрологія | |
dc.citation.spage | 25 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Ilchuk, Mykhailo | |
dc.contributor.author | Stadnyk, Andrii | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-03-11T08:26:32Z | |
dc.date.available | 2024-03-11T08:26:32Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | A brief description of the basic stages of image processing is given to pay attention to the segmentation stage as a possible way to improve efficiency in decision-making. The main characteristics of the presented model are visual signs, such as color, shape, the presence of a stem, and others. Due to the different approaches in image processing, a high level of truthfulness is achieved, which is expressed in the percentage ratio of the accuracy of decision-making and varies in the range from 90 to 96%. Therefore, the results obtained in this work make it possible to automate the process of visual inspection with the prospect of increasing the speed and quality of product sales for the consumer. | |
dc.format.extent | 25-31 | |
dc.format.pages | 7 | |
dc.identifier.citation | Ilchuk M. Computer visual inspection of pear quality / Mykhailo Ilchuk, Andrii Stadnyk // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 1. — P. 25–31. | |
dc.identifier.citationen | Ilchuk M. Computer visual inspection of pear quality / Mykhailo Ilchuk, Andrii Stadnyk // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 84. — No 1. — P. 25–31. | |
dc.identifier.doi | doi.org/10.23939/istcmtm2023.01.025 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61418 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вимірювальна техніка та метрологія, 1 (84), 2023 | |
dc.relation.ispartof | Measuring Equipment and Metrology, 1 (84), 2023 | |
dc.relation.references | [1] J. García-Alcaraz, A. Maldonado-Macías, G. CortesRobles. Lean Manufacturing in the Developing World, 117(8), 827–891. 2014. Available: https://link. springer.com/book/10.1007/978-3-319-04951-9 | |
dc.relation.references | [2] W. Sullivan, T. McDonald, & Van Aken, E. (2002). Equipment replacement decisions and lean manufacturing. Robotics and Computer Integrated Manufacturing, 18(3–4), 255–265. Available: https://www.sciencedirect.com/science/article/abs/pii/S0736584502000169 | |
dc.relation.references | [3] G. Kreiman. Biological and Computer Vision 52–53 (2021). Available: https://www.cambridge.org/core/books/biological-and-computervision/BB7E68A69AFE7A322F68F3C4A297F3CF | |
dc.relation.references | [4] R. Szeliski. Computer Vision: Algorithms and Applications, 42–43. 2022. Available: https://szeliski.org/Book/ | |
dc.relation.references | [5] J. Watt, R. Borhani, A. Katsaggelos. Machine Learning Refined: Foundations, Algorithms, and Applications, 45–46 [2020]. Available: https://people.engr.tamu.edu/guni/csce421/files/Machine_Learning_Refined.pdf | |
dc.relation.references | [6] A. Koul, S. Ganju, M. Kasam. Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-Vision Projects Using Python, Keras & TensorFlow, 25–26, 2019. Available: https://www.oreilly.com/library/view/practical-deep-learning/9781492034858/ | |
dc.relation.references | [7] J. Kelleher. Deep Learning 12–13 [2019]. Available: https://direct.mit.edu/books/book/4556/Deep-Learning | |
dc.relation.references | [8] T. Amaratunga. Deep Learning on Windows: Building Deep Learning Computer Vision Systems on Microsoft Windows 88–89 (2021). Available: https://link.springer.com/book/10.1007/978-1-4842-6431-7 | |
dc.relation.references | [9] M. Favorskaya, L. Jain. Computer Vision in Control Systems, 55–56, 2015. Available: https://link.springer.com/book/10.1007/978-3-319-10653-3 | |
dc.relation.references | [10] K. Mehrotra, Ch. Mohan, H. Huang. Anomaly Detection Principles and Algorithms, 165–166, 2017. Available: https://www.amazon.com/Detection-Principles-Algorithms-Terrorism-Computation/dp/3319675249 | |
dc.relation.references | [11] S. Prince. Computer Vision: Models, Learning, and Inference, 222–223, 2022. Available: http://www.computervisionmodels.com | |
dc.relation.references | [12] G. Garrido, P. Joshi. OpenCV 3.x with Python By Example, 33–34 (2018). Available: https://www.packtpub.com/product/opencv-3x-with-python-byexample-second-edition/9781788396905 | |
dc.relation.references | [13] N. Madanchi. Model-Based Approach for Energy and Resource Efficient Machining Systems, 111–112, 2022. Available: https://link.springer.com/book/10.1007/978-3-030-87540-4 | |
dc.relation.references | [14] M. Rafiei. Self-Supervised Learning A-Z: Theory & Hands-On Python, 24–25, 2022. Available: https://www.udemy.com/course/self-supervised-learning/ | |
dc.relation.references | [15] N. Sebe, M. Lew. Robust Computer Vision, 54–55, 2022. Available: https://link.springer.com/book/10.1007/978-94-017-0295-9 | |
dc.relation.references | [16] J. Marks. Tunnel vision in computer vision: can ChatGPT see?. 2022. Internet Journal. Available: https://medium.com/voxel51/tunnel-vision-in-computervision-can-chatgpt-see-e6ef037c535 | |
dc.relation.references | [17] A. Rosebrock. Deep Learning for Computer Vision with Python, 55–56, 2017. Available: https://bayanbox.ir/view/5130918188419813120/Adrian-Rosebrock-Deep-Learning-for.pdf | |
dc.relation.references | [18] G. Blokdyk. Object detection Complete Self-Assessment Guide, 42–43, 2021. Available: https://www.amazon.com/dp/0655324380?tag=uuid10-20 | |
dc.relation.references | [19] R. Shanmugamani. Deep Learning for Computer Vision. 68–69, 2021. Available: https://www.oreilly.com/library/view/deep-learning-for/9781788295628/edf4fbcccca0-4aaa-b9f4-d7c2292c520d.x.html | |
dc.relation.references | [20] J. Howse, P. Joshi, M. Beyeler. OpenCV: Computer Vision Projects with Python, 122–123, 2020. Available: https://www.oreilly.com/library/view/opencv-computervision/9781787125490/ch16s04.html | |
dc.relation.referencesen | [1] J. García-Alcaraz, A. Maldonado-Macías, G. CortesRobles. Lean Manufacturing in the Developing World, 117(8), 827–891. 2014. Available: https://link. springer.com/book/10.1007/978-3-319-04951-9 | |
dc.relation.referencesen | [2] W. Sullivan, T. McDonald, & Van Aken, E. (2002). Equipment replacement decisions and lean manufacturing. Robotics and Computer Integrated Manufacturing, 18(3–4), 255–265. Available: https://www.sciencedirect.com/science/article/abs/pii/S0736584502000169 | |
dc.relation.referencesen | [3] G. Kreiman. Biological and Computer Vision 52–53 (2021). Available: https://www.cambridge.org/core/books/biological-and-computervision/BB7E68A69AFE7A322F68F3C4A297F3CF | |
dc.relation.referencesen | [4] R. Szeliski. Computer Vision: Algorithms and Applications, 42–43. 2022. Available: https://szeliski.org/Book/ | |
dc.relation.referencesen | [5] J. Watt, R. Borhani, A. Katsaggelos. Machine Learning Refined: Foundations, Algorithms, and Applications, 45–46 [2020]. Available: https://people.engr.tamu.edu/guni/csce421/files/Machine_Learning_Refined.pdf | |
dc.relation.referencesen | [6] A. Koul, S. Ganju, M. Kasam. Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-Vision Projects Using Python, Keras & TensorFlow, 25–26, 2019. Available: https://www.oreilly.com/library/view/practical-deep-learning/9781492034858/ | |
dc.relation.referencesen | [7] J. Kelleher. Deep Learning 12–13 [2019]. Available: https://direct.mit.edu/books/book/4556/Deep-Learning | |
dc.relation.referencesen | [8] T. Amaratunga. Deep Learning on Windows: Building Deep Learning Computer Vision Systems on Microsoft Windows 88–89 (2021). Available: https://link.springer.com/book/10.1007/978-1-4842-6431-7 | |
dc.relation.referencesen | [9] M. Favorskaya, L. Jain. Computer Vision in Control Systems, 55–56, 2015. Available: https://link.springer.com/book/10.1007/978-3-319-10653-3 | |
dc.relation.referencesen | [10] K. Mehrotra, Ch. Mohan, H. Huang. Anomaly Detection Principles and Algorithms, 165–166, 2017. Available: https://www.amazon.com/Detection-Principles-Algorithms-Terrorism-Computation/dp/3319675249 | |
dc.relation.referencesen | [11] S. Prince. Computer Vision: Models, Learning, and Inference, 222–223, 2022. Available: http://www.computervisionmodels.com | |
dc.relation.referencesen | [12] G. Garrido, P. Joshi. OpenCV 3.x with Python By Example, 33–34 (2018). Available: https://www.packtpub.com/product/opencv-3x-with-python-byexample-second-edition/9781788396905 | |
dc.relation.referencesen | [13] N. Madanchi. Model-Based Approach for Energy and Resource Efficient Machining Systems, 111–112, 2022. Available: https://link.springer.com/book/10.1007/978-3-030-87540-4 | |
dc.relation.referencesen | [14] M. Rafiei. Self-Supervised Learning A-Z: Theory & Hands-On Python, 24–25, 2022. Available: https://www.udemy.com/course/self-supervised-learning/ | |
dc.relation.referencesen | [15] N. Sebe, M. Lew. Robust Computer Vision, 54–55, 2022. Available: https://link.springer.com/book/10.1007/978-94-017-0295-9 | |
dc.relation.referencesen | [16] J. Marks. Tunnel vision in computer vision: can ChatGPT see?. 2022. Internet Journal. Available: https://medium.com/voxel51/tunnel-vision-in-computervision-can-chatgpt-see-e6ef037c535 | |
dc.relation.referencesen | [17] A. Rosebrock. Deep Learning for Computer Vision with Python, 55–56, 2017. Available: https://bayanbox.ir/view/5130918188419813120/Adrian-Rosebrock-Deep-Learning-for.pdf | |
dc.relation.referencesen | [18] G. Blokdyk. Object detection Complete Self-Assessment Guide, 42–43, 2021. Available: https://www.amazon.com/dp/0655324380?tag=uuid10-20 | |
dc.relation.referencesen | [19] R. Shanmugamani. Deep Learning for Computer Vision. 68–69, 2021. Available: https://www.oreilly.com/library/view/deep-learning-for/9781788295628/edf4fbcccca0-4aaa-b9f4-d7c2292c520d.x.html | |
dc.relation.referencesen | [20] J. Howse, P. Joshi, M. Beyeler. OpenCV: Computer Vision Projects with Python, 122–123, 2020. Available: https://www.oreilly.com/library/view/opencv-computervision/9781787125490/ch16s04.html | |
dc.relation.uri | https://link | |
dc.relation.uri | https://www.sciencedirect.com/science/article/abs/pii/S0736584502000169 | |
dc.relation.uri | https://www.cambridge.org/core/books/biological-and-computervision/BB7E68A69AFE7A322F68F3C4A297F3CF | |
dc.relation.uri | https://szeliski.org/Book/ | |
dc.relation.uri | https://people.engr.tamu.edu/guni/csce421/files/Machine_Learning_Refined.pdf | |
dc.relation.uri | https://www.oreilly.com/library/view/practical-deep-learning/9781492034858/ | |
dc.relation.uri | https://direct.mit.edu/books/book/4556/Deep-Learning | |
dc.relation.uri | https://link.springer.com/book/10.1007/978-1-4842-6431-7 | |
dc.relation.uri | https://link.springer.com/book/10.1007/978-3-319-10653-3 | |
dc.relation.uri | https://www.amazon.com/Detection-Principles-Algorithms-Terrorism-Computation/dp/3319675249 | |
dc.relation.uri | http://www.computervisionmodels.com | |
dc.relation.uri | https://www.packtpub.com/product/opencv-3x-with-python-byexample-second-edition/9781788396905 | |
dc.relation.uri | https://link.springer.com/book/10.1007/978-3-030-87540-4 | |
dc.relation.uri | https://www.udemy.com/course/self-supervised-learning/ | |
dc.relation.uri | https://link.springer.com/book/10.1007/978-94-017-0295-9 | |
dc.relation.uri | https://medium.com/voxel51/tunnel-vision-in-computervision-can-chatgpt-see-e6ef037c535 | |
dc.relation.uri | https://bayanbox.ir/view/5130918188419813120/Adrian-Rosebrock-Deep-Learning-for.pdf | |
dc.relation.uri | https://www.amazon.com/dp/0655324380?tag=uuid10-20 | |
dc.relation.uri | https://www.oreilly.com/library/view/deep-learning-for/9781788295628/edf4fbcccca0-4aaa-b9f4-d7c2292c520d.x.html | |
dc.relation.uri | https://www.oreilly.com/library/view/opencv-computervision/9781787125490/ch16s04.html | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | Quality control | |
dc.subject | Computer vision | |
dc.subject | Automation | |
dc.title | Computer visual inspection of pear quality | |
dc.type | Article |
Files
License bundle
1 - 1 of 1