Новий метод одержання трубчастих виробів на основі полімерних гелів

dc.citation.epage202
dc.citation.issue2
dc.citation.spage195
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationТехнічний університет Кошице
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnical University of Kosice
dc.contributor.authorГриценко, О. М.
dc.contributor.authorБаран, Н. М.
dc.contributor.authorДулебова, Л.
dc.contributor.authorБережний, Б. В.
dc.contributor.authorGrytsenko, O. M.
dc.contributor.authorBaran, N. M.
dc.contributor.authorDulebova, L.
dc.contributor.authorBerezhnyy, B. V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:47:15Z
dc.date.available2024-01-22T08:47:15Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractРозроблено метод одержання композиційних гідрогелевих трубчастих виробів підвищеної міцності на основі кополімерів 2-гідроксіетилметакрилату з полівінілпіролідоном. Метод полягає у формуванні гідрогелевих трубок з наступним осадженням з розчину в їх зовнішню поверхню зміцнювального шару на основі поліаміду, модифікованого полівініл-піролідоном. Одержані композиційні гідрогелеві трубки, які відзначаються достатньою міцністю, пружністю, еластичністю, а також здатністю витримувати внутрішній тиск у межах 24–43 кПа (180–320 мм рт. ст.).
dc.description.abstractThe method for obtaining composite hydrogel tubular products with the increased strength on the basis of copolymers of 2-hydroxyethylmethacrylate with polyvinylpyrrolidone has been developed. The method consists in the formation of hydrogel tubes with a subsequent precipitation from the solution into their outer surface of the reinforced layer based on polyamide, modified with polyvinylpyrrolidone. The obtained composite hydrogel tubes are characterized by the sufficient strength, resilience, elasticity, as well as the ability to withstand an internal pressure within 24‒43 kPa (180‒320 mm Hg).
dc.format.extent195-202
dc.format.pages8
dc.identifier.citationНовий метод одержання трубчастих виробів на основі полімерних гелів / О. М. Гриценко, Н. М. Баран, Л. Дулебова, Б. В. Бережний // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Том 4. — № 2. — С. 195–202.
dc.identifier.citationenA new obtaining method of tubular products based on polymer gels / O. M. Grytsenko, N. M. Baran, L. Dulebova, B. V. Berezhnyy // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 2. — P. 195–202.
dc.identifier.doidoi.org/10.23939/ctas2021.02.195
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60897
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (4), 2021
dc.relation.references1. Popova I. V., Stepanova A. O., Sergeevichev D. S., Akulov A. E., Zakharova I. S., Pokushalov A. A., Laktionov P. P., Karpenko A. A. (2015) Comparative study of three vascular grafts produced by electrospinning in vitro and in vivo. Patologiya krovoobrashcheniya i kardiokhirurgiya, 19(4), 63–71. [in Russian].
dc.relation.references2. Khlif H., Abdessalem S. B., Dhouib S., Sakli F. (2011). Contribution to the Improvement of Textile Vascular Prostheses Crimping. Trends in Applied Sciences Research, 6, 1019–1027. DOI: 10.3923/tasr.2011.1019.1027.
dc.relation.references3. Marzougui S., Abdessalem S. B., Sakli, F.(2009). Viscoelastic behavior of textile artificial ligaments / S. Marzougui, S. B. Abdessalem, F. Sakli. J. Applied Sci, 9, 2794–2800. https://DOI:10.3923/jas.2009.2794.2800.
dc.relation.references4. Grasl C., Bergmeister H., Stoiber M., Schima H., Weigel G. (2010). Electrospun polyurethane vascular grafts: In vitro mechanical behavior and endothelial adhesion molecule expression. J. Biomed. Mater. Res., 93A, 716–723. https://doi.org/10.1002/jbm.a.32584.
dc.relation.references5. Chlupác J., Filová E., Bacáková L. (2010). Vascular prostheses: 50 years of advancement from synthetic towards tissue engineering and cell therapy. Rozhledy, 89, 85–94.
dc.relation.references6. Khan S., Ullah A., Ullah K., Rehman N. (2016). Insight into hydrogels. Designed Monomers and Polymers, 19(5), 456–478. http://dx.doi.org/10.1080/15685551.2016.1169380.
dc.relation.references7. Jumadilov T., Abilov Z., Kondaurov R., Himersen H., Yeskalieva G., Akylbekova M., Akimov A. (2015). Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel. Chemistry & Chemical Technology, 9(4), 459–462. DOI: https://doi.org/10.23939/chcht09.04.459
dc.relation.references8. Gibas I., Janik H. (2010). Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chemistry & Chemical Technology, 4(4), Р. 297–304.
dc.relation.references9. Suberlyak O., Skorokhoda V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In S. Haider, A. Haider (Ed.), Hydrogels (pp. 136–214). London: IntechOpen. DOI: 10.5772/intechopen.72082.
dc.relation.references10. Grytsenko O. M., Hnatchuk N. M., Suberlyak O. V. (2013). Vplyv initsiyuvalʹnoyi systemy na strukturu ta vlastyvosti hidroheliv na osnovi kopolimeriv polivinilpirolidonu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy – Eastern-European Journal of Enterprise Technologies, 5/8(65), 59–63. [in Ukrainian].
dc.relation.references11. Skorokhoda V. (2010). Matrix polymerization of 2-Hydroxyethylmethacrylate in the presence of polyvinylpyrrolidone in permanent magnetic field. Chemistry & Chemical Technology, 4, 191–196.
dc.relation.references12. Suberlyak O. V., Skorokhoda, V. Y., Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 236–238. [in Ukrainian].
dc.relation.references13. Montheard J., Chatzopoulos M., Chappard D. (1992). 2-Hydroxyethyl Methacrylate (HEMA): chemical properties and applications in biomedical fields. Journal of Macromolecular Science, 32, 1–34. https://doi.org/10.1080/15321799208018377.
dc.relation.references14. Yanez F., Concheiro A., Alvarez-Lorenzo C. (2008). Macromolecule release and smoothness of semiinterpenetrating PVP–pHEMA networks for comfortable soft contact lenses. Eur. J. Pharm. Biopharm., 69, 1094–1103. https://doi.org/10.1016/j.ejpb.2008.01.023.
dc.relation.references15. Malešić N., Rusmirović J., Jovašević J. (2014). Antimicrobial Hydrogels Based on 2-hydroxyethylmethacrylate and Itaconic Acid Containing Silver (I) Ion. Tehnika, 69, 563–568. DOI: 10.5937/tehnika1404563M.
dc.relation.references16. Prasitsilp M., Siriwittayakorn T., Molloy R., Suebsanit N., Siriwittayakorn P., Veeranondha S., (2003). Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. Journal of Materials Science: Materials in Medicine, 14, 595–600. https://doi.org/10.1023/A:1024066806347.
dc.relation.references17. Teodorescu M., Bercea M. (2015). Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54, 923–943. https://doi.org/10.1080/03602559.2014.979506.
dc.relation.references18. Reverberi A., Salerno M., Lauciello S., Fabiano B. (2016). Synthesis of copper nanoparticles in ethylene glycol by chemical reduction with vanadium (+2) salts. Materials, 9, 809–820. https://doi.org/10.3390/ma9100809.
dc.relation.references19. Grytsenko O. M., Hayduk A. V., Bedlʹovsʹka Kh. M., Gaydos I. (2016). Strukturni kharakterystyky khimichno vidnosnoho nikelyu yak napovnyuvacha polimernykh hidroheliv. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 841, 351–357. [in Ukrainian].
dc.relation.references20. Fan M., Zhang L., Wang R., Guo H., Jia S. (2017). Facile and controllable synthesis of iron nanoparticles directed by montmorillonite and polyvinylpyrrolidone. Applied Clay Science, 144, 1–8. http://dx.doi.org/10.1016/j.clay.2017.04.022.
dc.relation.references21. Bashtyk Y., Fechan A., Grytsenko O., Hotra Z., Kremer I., Suberlyak O., Aksimentyeva O., Horbenko Y., & Kotsarenko, M. (2019). Electrical elements of the optical systems based on hydrogel – electrochromic polymer composites. Molecular Crystals and Liquid Crystals, 672(1), 150–158. DOI:10.1080/15421406.2018.1550546.
dc.relation.references22. Grytsenko O. M., Skorokhoda V. Y., Shapoval P. Y., Bukhvak I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, 414, 82–85. [in Ukrainian].
dc.relation.references23. Suberlyak О. V., Baran N. M., Yatsul’chak H. V. (2017). Physicomechanical properties of the films based on polyamide–polyvinylpyrrolidone mixtures. Materials Science, 53, 392–397. https://doi.org/10.1007/s11003-017-0087-6
dc.relation.references24. Suberlyak О., Grytsenko O., Hischak Kh., Hnatchuk N. (2013). Researching influence the nature of metal on mechanism of synthesis polyvinilpyrrolidone metal copolymers. Chemistry and Chemical Technology, 7, 289–294. http://ena.lp.edu.ua:8080/handle/ntb/23488.
dc.relation.references25. Roy N., Saha N.: PVP-based hydrogels: synthesis, properties and applications [in:] F. V. Câmara and L. J. Ferreira (Ed.), Hydrogels: Synthesis, Characterization and Applications. Nova Science, Hauppauge, NY, USA, 2012, 227–252.
dc.relation.references26. Grytsenko O. M., Naumenko O. P., Suberlyak O. V., Dulebova L., Berezhnyy B. V. (2020). The technological parameters optimization of the graft copolymerization 2-hydroxyethyl methacrylate with polyvinylpyrrolidone for nickel deposition from salts. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 25–32. DOI: 10.32434/0321-4095-2019-128-1-25-32
dc.relation.references27. Suberlyak O., Grytsenko O., Kochubei V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429–434. doi: https://doi.org/10.23939/chcht09.04.429.
dc.relation.references28. Suberlyak O., Grytsenko O., Baran N., Yatsulchak G., Berezhnyy B.. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312–317. https://doi.org/10.23939/chcht14.03.312.
dc.relation.references29. Grytsenko O., Spiśak Е., Dulebová L., Moravskii V., Suberlyak О. (2015). Sorption capable film coatings with variable conductivity. Materials Science Forum, 818, 97–101. https://doi.org/10.4028/www.scientific.net/MSF.818.97.
dc.relation.references30. Suberlyak O. V., Hrytsenko O. M., Hishchak K. Y. (2016). Influence of the metal surface of powder filler om the structure and properties of composite materials based on the co-polymers of methacrylates with polyvinylpyrrolidone. Materials Science, 52, 155–164. https://doi.org/10.1007/s11003-016-9938-9.
dc.relation.references31. Sousa J. V., Antunes L., Mendes C., Marinho A., Gonçalves A., Gonçalves Ó., Matos, A. (2014). Prosthetic vascular graft infections: A center experience. Angiologia e Cirurgia Vascular, 10(2), 52–57. https://doi.org/10.1016/S1646-706X(14)70050-3.
dc.relation.referencesen1. Popova I. V., Stepanova A. O., Sergeevichev D. S., Akulov A. E., Zakharova I. S., Pokushalov A. A., Laktionov P. P., Karpenko A. A. (2015) Comparative study of three vascular grafts produced by electrospinning in vitro and in vivo. Patologiya krovoobrashcheniya i kardiokhirurgiya, 19(4), 63–71. [in Russian].
dc.relation.referencesen2. Khlif H., Abdessalem S. B., Dhouib S., Sakli F. (2011). Contribution to the Improvement of Textile Vascular Prostheses Crimping. Trends in Applied Sciences Research, 6, 1019–1027. DOI: 10.3923/tasr.2011.1019.1027.
dc.relation.referencesen3. Marzougui S., Abdessalem S. B., Sakli, F.(2009). Viscoelastic behavior of textile artificial ligaments, S. Marzougui, S. B. Abdessalem, F. Sakli. J. Applied Sci, 9, 2794–2800. https://DOI:10.3923/jas.2009.2794.2800.
dc.relation.referencesen4. Grasl C., Bergmeister H., Stoiber M., Schima H., Weigel G. (2010). Electrospun polyurethane vascular grafts: In vitro mechanical behavior and endothelial adhesion molecule expression. J. Biomed. Mater. Res., 93A, 716–723. https://doi.org/10.1002/jbm.a.32584.
dc.relation.referencesen5. Chlupác J., Filová E., Bacáková L. (2010). Vascular prostheses: 50 years of advancement from synthetic towards tissue engineering and cell therapy. Rozhledy, 89, 85–94.
dc.relation.referencesen6. Khan S., Ullah A., Ullah K., Rehman N. (2016). Insight into hydrogels. Designed Monomers and Polymers, 19(5), 456–478. http://dx.doi.org/10.1080/15685551.2016.1169380.
dc.relation.referencesen7. Jumadilov T., Abilov Z., Kondaurov R., Himersen H., Yeskalieva G., Akylbekova M., Akimov A. (2015). Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel. Chemistry & Chemical Technology, 9(4), 459–462. DOI: https://doi.org/10.23939/chcht09.04.459
dc.relation.referencesen8. Gibas I., Janik H. (2010). Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chemistry & Chemical Technology, 4(4), R. 297–304.
dc.relation.referencesen9. Suberlyak O., Skorokhoda V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. In S. Haider, A. Haider (Ed.), Hydrogels (pp. 136–214). London: IntechOpen. DOI: 10.5772/intechopen.72082.
dc.relation.referencesen10. Grytsenko O. M., Hnatchuk N. M., Suberlyak O. V. (2013). Vplyv initsiyuvalʹnoyi systemy na strukturu ta vlastyvosti hidroheliv na osnovi kopolimeriv polivinilpirolidonu. Skhidno-Yevropeyskyy zhurnal peredovykh tekhnolohiy – Eastern-European Journal of Enterprise Technologies, 5/8(65), 59–63. [in Ukrainian].
dc.relation.referencesen11. Skorokhoda V. (2010). Matrix polymerization of 2-Hydroxyethylmethacrylate in the presence of polyvinylpyrrolidone in permanent magnetic field. Chemistry & Chemical Technology, 4, 191–196.
dc.relation.referencesen12. Suberlyak O. V., Skorokhoda, V. Y., Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 236–238. [in Ukrainian].
dc.relation.referencesen13. Montheard J., Chatzopoulos M., Chappard D. (1992). 2-Hydroxyethyl Methacrylate (HEMA): chemical properties and applications in biomedical fields. Journal of Macromolecular Science, 32, 1–34. https://doi.org/10.1080/15321799208018377.
dc.relation.referencesen14. Yanez F., Concheiro A., Alvarez-Lorenzo C. (2008). Macromolecule release and smoothness of semiinterpenetrating PVP–pHEMA networks for comfortable soft contact lenses. Eur. J. Pharm. Biopharm., 69, 1094–1103. https://doi.org/10.1016/j.ejpb.2008.01.023.
dc.relation.referencesen15. Malešić N., Rusmirović J., Jovašević J. (2014). Antimicrobial Hydrogels Based on 2-hydroxyethylmethacrylate and Itaconic Acid Containing Silver (I) Ion. Tehnika, 69, 563–568. DOI: 10.5937/tehnika1404563M.
dc.relation.referencesen16. Prasitsilp M., Siriwittayakorn T., Molloy R., Suebsanit N., Siriwittayakorn P., Veeranondha S., (2003). Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. Journal of Materials Science: Materials in Medicine, 14, 595–600. https://doi.org/10.1023/A:1024066806347.
dc.relation.referencesen17. Teodorescu M., Bercea M. (2015). Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications. Polymer-Plastics Technology and Engineering, 54, 923–943. https://doi.org/10.1080/03602559.2014.979506.
dc.relation.referencesen18. Reverberi A., Salerno M., Lauciello S., Fabiano B. (2016). Synthesis of copper nanoparticles in ethylene glycol by chemical reduction with vanadium (+2) salts. Materials, 9, 809–820. https://doi.org/10.3390/ma9100809.
dc.relation.referencesen19. Grytsenko O. M., Hayduk A. V., Bedlʹovsʹka Kh. M., Gaydos I. (2016). Strukturni kharakterystyky khimichno vidnosnoho nikelyu yak napovnyuvacha polimernykh hidroheliv. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 841, 351–357. [in Ukrainian].
dc.relation.referencesen20. Fan M., Zhang L., Wang R., Guo H., Jia S. (2017). Facile and controllable synthesis of iron nanoparticles directed by montmorillonite and polyvinylpyrrolidone. Applied Clay Science, 144, 1–8. http://dx.doi.org/10.1016/j.clay.2017.04.022.
dc.relation.referencesen21. Bashtyk Y., Fechan A., Grytsenko O., Hotra Z., Kremer I., Suberlyak O., Aksimentyeva O., Horbenko Y., & Kotsarenko, M. (2019). Electrical elements of the optical systems based on hydrogel – electrochromic polymer composites. Molecular Crystals and Liquid Crystals, 672(1), 150–158. DOI:10.1080/15421406.2018.1550546.
dc.relation.referencesen22. Grytsenko O. M., Skorokhoda V. Y., Shapoval P. Y., Bukhvak I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", 414, 82–85. [in Ukrainian].
dc.relation.referencesen23. Suberlyak O. V., Baran N. M., Yatsul’chak H. V. (2017). Physicomechanical properties of the films based on polyamide–polyvinylpyrrolidone mixtures. Materials Science, 53, 392–397. https://doi.org/10.1007/s11003-017-0087-6
dc.relation.referencesen24. Suberlyak O., Grytsenko O., Hischak Kh., Hnatchuk N. (2013). Researching influence the nature of metal on mechanism of synthesis polyvinilpyrrolidone metal copolymers. Chemistry and Chemical Technology, 7, 289–294. http://ena.lp.edu.ua:8080/handle/ntb/23488.
dc.relation.referencesen25. Roy N., Saha N., PVP-based hydrogels: synthesis, properties and applications [in:] F. V. Câmara and L. J. Ferreira (Ed.), Hydrogels: Synthesis, Characterization and Applications. Nova Science, Hauppauge, NY, USA, 2012, 227–252.
dc.relation.referencesen26. Grytsenko O. M., Naumenko O. P., Suberlyak O. V., Dulebova L., Berezhnyy B. V. (2020). The technological parameters optimization of the graft copolymerization 2-hydroxyethyl methacrylate with polyvinylpyrrolidone for nickel deposition from salts. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 25–32. DOI: 10.32434/0321-4095-2019-128-1-25-32
dc.relation.referencesen27. Suberlyak O., Grytsenko O., Kochubei V. (2015). The role of FeSO4 in the obtaining of polyvinylpirolidone copolymers. Chemistry & Chemical Technology, 9, 429–434. doi: https://doi.org/10.23939/chcht09.04.429.
dc.relation.referencesen28. Suberlyak O., Grytsenko O., Baran N., Yatsulchak G., Berezhnyy B.. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312–317. https://doi.org/10.23939/chcht14.03.312.
dc.relation.referencesen29. Grytsenko O., Spiśak E., Dulebová L., Moravskii V., Suberlyak O. (2015). Sorption capable film coatings with variable conductivity. Materials Science Forum, 818, 97–101. https://doi.org/10.4028/www.scientific.net/MSF.818.97.
dc.relation.referencesen30. Suberlyak O. V., Hrytsenko O. M., Hishchak K. Y. (2016). Influence of the metal surface of powder filler om the structure and properties of composite materials based on the co-polymers of methacrylates with polyvinylpyrrolidone. Materials Science, 52, 155–164. https://doi.org/10.1007/s11003-016-9938-9.
dc.relation.referencesen31. Sousa J. V., Antunes L., Mendes C., Marinho A., Gonçalves A., Gonçalves Ó., Matos, A. (2014). Prosthetic vascular graft infections: A center experience. Angiologia e Cirurgia Vascular, 10(2), 52–57. https://doi.org/10.1016/S1646-706X(14)70050-3.
dc.relation.urihttps://DOI:10.3923/jas.2009.2794.2800
dc.relation.urihttps://doi.org/10.1002/jbm.a.32584
dc.relation.urihttp://dx.doi.org/10.1080/15685551.2016.1169380
dc.relation.urihttps://doi.org/10.23939/chcht09.04.459
dc.relation.urihttps://doi.org/10.1080/15321799208018377
dc.relation.urihttps://doi.org/10.1016/j.ejpb.2008.01.023
dc.relation.urihttps://doi.org/10.1023/A:1024066806347
dc.relation.urihttps://doi.org/10.1080/03602559.2014.979506
dc.relation.urihttps://doi.org/10.3390/ma9100809
dc.relation.urihttp://dx.doi.org/10.1016/j.clay.2017.04.022
dc.relation.urihttps://doi.org/10.1007/s11003-017-0087-6
dc.relation.urihttp://ena.lp.edu.ua:8080/handle/ntb/23488
dc.relation.urihttps://doi.org/10.23939/chcht09.04.429
dc.relation.urihttps://doi.org/10.23939/chcht14.03.312
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/MSF.818.97
dc.relation.urihttps://doi.org/10.1007/s11003-016-9938-9
dc.relation.urihttps://doi.org/10.1016/S1646-706X(14)70050-3
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectгідрогелі
dc.subjectгідрогелеві композити
dc.subjectполіамід
dc.subjectполівінілпіролідон
dc.subjectсудинні протези
dc.subjecthydrogels
dc.subjecthydrogel composites
dc.subjectpolyamide
dc.subjectpolyvinylpyrrolidone
dc.subjectvascular prostheses
dc.titleНовий метод одержання трубчастих виробів на основі полімерних гелів
dc.title.alternativeA new obtaining method of tubular products based on polymer gels
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021v4n2_Grytsenko_O_M-A_new_obtaining_method_195-202.pdf
Size:
957.8 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021v4n2_Grytsenko_O_M-A_new_obtaining_method_195-202__COVER.png
Size:
480.21 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: