Uncrewed vehicle pathfinding approach based on artificial bee colony method

dc.citation.epage8
dc.citation.issue1
dc.citation.journalTitleДосягнення у кібер-фізичних системах
dc.citation.spage1
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorSinkevych, Oleh
dc.contributor.authorBoyko, Yaroslav
dc.contributor.authorSokolovskyy, Bohdan
dc.contributor.authorPavlyk, Mykhailo
dc.contributor.authorYarosh, Oleh
dc.contributor.authorFutey, Oleksandr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-17T10:07:58Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe presented study is dedicated to the dynamic pathfinding problem for UV. Since the automation of UV movement is an important area in many applied domains like robotics, the development of drones, autopilots, and self-learnable platforms, we propose and study a promising approach based on the algorithm of swarm AI. Given the 2D environment with multiple obstacles of rectangular shape, the task is to dynamically calculate a suboptimal path from the starting point to the target. The agent has been represented as UV in 2D space and should find the next optimal movement point from the current position only within a small neighborhood area. This area has been defined as a square region around the current agent’s position. The size of the region has been determined by the attainability of the agent's scanning sensors. If the obstacle is detected by the agent, the latter should be taken into consideration while calculating the next trajectory point. To perform these calculations, the ABC metaheuristic, one of the best representatives of swarm AI, has been used. The validation of the proposed approach has been performed on several 2D maps with different complexity and number of obstacles. Also, to obtain the proper configuration, an inverse problem of identification of guided function weights has been formulated and solved. The outlined results show the perspective of the proposed approach and can complement the existing solutions to the pathfinding problem.
dc.format.extent1-8
dc.format.pages8
dc.identifier.citationUncrewed vehicle pathfinding approach based on artificial bee colony method / Sinkevych Oleh, Boyko Yaroslav, Sokolovskyy Bohdan, Pavlyk Mykhailo, Yarosh Oleh, Futey Oleksandr // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 1–8.
dc.identifier.citationenUncrewed vehicle pathfinding approach based on artificial bee colony method / Sinkevych Oleh, Boyko Yaroslav, Sokolovskyy Bohdan, Pavlyk Mykhailo, Yarosh Oleh, Futey Oleksandr // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 1–8.
dc.identifier.doidoi.org/10.23939/acps2024.01.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64181
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofДосягнення у кібер-фізичних системах, 1 (9), 2024
dc.relation.ispartofAdvances in Cyber-Physical Systems, 1 (9), 2024
dc.relation.references[1] Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., & Bettstetter, C. (2018). Drone networks: Communications, coordination, and sensing. Ad Hoc Networks, 68, 1–15. DOI: https://doi.org/10.1016/j.adhoc.2017.09.001.
dc.relation.references[2] Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: a systematic review. Archives of computational methods in engineering, 29(5), 2531–2561. DOI: https://doi.org/10.1007/s11831-021-09694-4.
dc.relation.references[3] Abu-Mouti, F. S., & El-Hawary, M. E. (2012, March). Overview of Artificial Bee Colony (ABC) algorithm and its applications. In 2012 IEEE International Systems Conference SysCon 2012 (pp. 1–6). IEEE. DOI: https://doi.org/10.1109/syscon.2012.6189539.
dc.relation.references[4] Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical computer science, 344(2–3), 243–278. DOI: https://doi.org/10.1016/j.tcs.2005.05.020.
dc.relation.references[5] Fister, I., Fister Jr, I., Yang, X. S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and evolutionary computation, 13, 34–46. DOI: https://doi.org/10.1016/j.swevo.2013.06.001.
dc.relation.references[6] Bhattacharjee, P., Rakshit, P., Goswami, I., Konar, A., & Nagar, A. K. (2011, October). Multi-robot path-planning using artificial bee colony optimization algorithm. In 2011 Third World Congress on Nature and Biologically Inspired Computing (pp. 219–224). IEEE. DOI: https://doi.org/10.1109/nabic.2011.6089601.
dc.relation.references[7] Contreras-Cruz, M. A., Ayala-Ramirez, V., & Hernandez-Belmonte, U. H. (2015). Mobile robot path planning using artificial bee colony and evolutionary programming. Applied Soft Computing, 30, 319–328. DOI: https://doi.org/10.1016/j.asoc.2015.01.067.
dc.relation.references[8] Contreras-Cruz, M. A., Lopez-Perez, J. J., & Ayala Ramirez, V. (2017, June). Distributed path planning for multi-robot teams based on artificial bee colony. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 541–548). IEEE. DOI: https://doi.org/10.1109/cec.2017.7969358.
dc.relation.references[9] Liang, J. H., & Lee, C. H. (2015). Efficient collision-free path-planning of multiple mobile robots system using efficient artificial bee colony algorithm. Advances in Engineering Software, 79, 47–56. DOI: https://doi.org/10.1016/j.advengsoft.2014.09.006.
dc.relation.references[10] Nayyar, A., Nguyen, N. G., Kumari, R., & Kumar, S. (2020). Robot path planning using modified artificial bee colony algorithm. In Frontiers in Intelligent Computing: Theory and Applications: Proceedings of the 7th International Conference on FICTA (2018), Vol. 2 (pp. 25–36). Springer Singapore. DOI: https://doi.org/10.1007/978-981-13-9920-6_3.
dc.relation.references[11] Kumar, S., & Sikander, A. (2022). Optimum mobile robot path planning using improved artificial bee colony algorithm and evolutionary programming. Arabian Journal for Science and Engineering, 47(3), 3519–3539. DOI: https://doi.org/10.1007/s13369-021-06326-8.
dc.relation.references[12] Kumar, S., & Sikander, A. (2024). A novel hybrid framework for single and multi-robot path planning in a complex industrial environment. Journal of Intelligent Manufacturing, 35(2), 587–612. DOI: https://doi.org/10.1007/s10845-022-02056-2.
dc.relation.references[13] Faridi, A. Q., Sharma, S., Shukla, A., Tiwari, R., & Dhar, J. (2018). Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment. Intelligent Service Robotics, 11, 171–186. DOI: https://doi.org/10.1007/s11370-017-0244-7.
dc.relation.references[14] Karaboga, D., & Akay, B. (2011). A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Applied soft computing, 11(3), 3021–3031. DOI: https://doi.org/10.1016/j.asoc.2010.12.001.
dc.relation.referencesen[1] Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., & Bettstetter, C. (2018). Drone networks: Communications, coordination, and sensing. Ad Hoc Networks, 68, 1–15. DOI: https://doi.org/10.1016/j.adhoc.2017.09.001.
dc.relation.referencesen[2] Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: a systematic review. Archives of computational methods in engineering, 29(5), 2531–2561. DOI: https://doi.org/10.1007/s11831-021-09694-4.
dc.relation.referencesen[3] Abu-Mouti, F. S., & El-Hawary, M. E. (2012, March). Overview of Artificial Bee Colony (ABC) algorithm and its applications. In 2012 IEEE International Systems Conference SysCon 2012 (pp. 1–6). IEEE. DOI: https://doi.org/10.1109/syscon.2012.6189539.
dc.relation.referencesen[4] Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical computer science, 344(2–3), 243–278. DOI: https://doi.org/10.1016/j.tcs.2005.05.020.
dc.relation.referencesen[5] Fister, I., Fister Jr, I., Yang, X. S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and evolutionary computation, 13, 34–46. DOI: https://doi.org/10.1016/j.swevo.2013.06.001.
dc.relation.referencesen[6] Bhattacharjee, P., Rakshit, P., Goswami, I., Konar, A., & Nagar, A. K. (2011, October). Multi-robot path-planning using artificial bee colony optimization algorithm. In 2011 Third World Congress on Nature and Biologically Inspired Computing (pp. 219–224). IEEE. DOI: https://doi.org/10.1109/nabic.2011.6089601.
dc.relation.referencesen[7] Contreras-Cruz, M. A., Ayala-Ramirez, V., & Hernandez-Belmonte, U. H. (2015). Mobile robot path planning using artificial bee colony and evolutionary programming. Applied Soft Computing, 30, 319–328. DOI: https://doi.org/10.1016/j.asoc.2015.01.067.
dc.relation.referencesen[8] Contreras-Cruz, M. A., Lopez-Perez, J. J., & Ayala Ramirez, V. (2017, June). Distributed path planning for multi-robot teams based on artificial bee colony. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 541–548). IEEE. DOI: https://doi.org/10.1109/cec.2017.7969358.
dc.relation.referencesen[9] Liang, J. H., & Lee, C. H. (2015). Efficient collision-free path-planning of multiple mobile robots system using efficient artificial bee colony algorithm. Advances in Engineering Software, 79, 47–56. DOI: https://doi.org/10.1016/j.advengsoft.2014.09.006.
dc.relation.referencesen[10] Nayyar, A., Nguyen, N. G., Kumari, R., & Kumar, S. (2020). Robot path planning using modified artificial bee colony algorithm. In Frontiers in Intelligent Computing: Theory and Applications: Proceedings of the 7th International Conference on FICTA (2018), Vol. 2 (pp. 25–36). Springer Singapore. DOI: https://doi.org/10.1007/978-981-13-9920-6_3.
dc.relation.referencesen[11] Kumar, S., & Sikander, A. (2022). Optimum mobile robot path planning using improved artificial bee colony algorithm and evolutionary programming. Arabian Journal for Science and Engineering, 47(3), 3519–3539. DOI: https://doi.org/10.1007/s13369-021-06326-8.
dc.relation.referencesen[12] Kumar, S., & Sikander, A. (2024). A novel hybrid framework for single and multi-robot path planning in a complex industrial environment. Journal of Intelligent Manufacturing, 35(2), 587–612. DOI: https://doi.org/10.1007/s10845-022-02056-2.
dc.relation.referencesen[13] Faridi, A. Q., Sharma, S., Shukla, A., Tiwari, R., & Dhar, J. (2018). Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment. Intelligent Service Robotics, 11, 171–186. DOI: https://doi.org/10.1007/s11370-017-0244-7.
dc.relation.referencesen[14] Karaboga, D., & Akay, B. (2011). A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Applied soft computing, 11(3), 3021–3031. DOI: https://doi.org/10.1016/j.asoc.2010.12.001.
dc.relation.urihttps://doi.org/10.1016/j.adhoc.2017.09.001
dc.relation.urihttps://doi.org/10.1007/s11831-021-09694-4
dc.relation.urihttps://doi.org/10.1109/syscon.2012.6189539
dc.relation.urihttps://doi.org/10.1016/j.tcs.2005.05.020
dc.relation.urihttps://doi.org/10.1016/j.swevo.2013.06.001
dc.relation.urihttps://doi.org/10.1109/nabic.2011.6089601
dc.relation.urihttps://doi.org/10.1016/j.asoc.2015.01.067
dc.relation.urihttps://doi.org/10.1109/cec.2017.7969358
dc.relation.urihttps://doi.org/10.1016/j.advengsoft.2014.09.006
dc.relation.urihttps://doi.org/10.1007/978-981-13-9920-6_3
dc.relation.urihttps://doi.org/10.1007/s13369-021-06326-8
dc.relation.urihttps://doi.org/10.1007/s10845-022-02056-2
dc.relation.urihttps://doi.org/10.1007/s11370-017-0244-7
dc.relation.urihttps://doi.org/10.1016/j.asoc.2010.12.001
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Sinkevych O., Boyko Ya., Sokolovskyy B., Pavlyk M., Yarosh O., Futey O., 2024
dc.subjectArtificial bee colony
dc.subjectMetaheuristics
dc.subjectNumerical optimization
dc.subjectSwarm intelligence
dc.subjectUV pathfindi
dc.titleUncrewed vehicle pathfinding approach based on artificial bee colony method
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n1_Sinkevych_O-Uncrewed_vehicle_pathfinding_1-8.pdf
Size:
360.93 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n1_Sinkevych_O-Uncrewed_vehicle_pathfinding_1-8__COVER.png
Size:
545.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: