Response time in inertial measurement unit control algorithms

dc.citation.epage8
dc.citation.issue2
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage5
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorZeng, Xinyu
dc.contributor.authorLysa, Olha
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-13T08:43:19Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe Inertial Measurement Unit (IMU) [1] is a cornerstone technology in various fields, ranging from aerospace to consumer electronics, where accurate motion tracking is paramount. Central to the effectiveness of an IMU is the quality of data processing, particularly in the context of filtering techniques. This study compares two filtering methods: Complementary Filters and Kalman Filters, in their application to IMU data processing. Complementary Filters, known for their simplicity and efficiency, contrast with the more complex but potentially more accurate Kalman Filters. Our investigation delves into the underpinnings of each filter, followed by a practical analysis of their performance in real-world IMU applications. We comprehensively compare these filters in terms of accuracy, computational efficiency, and ease of implementation. This research offers valuable insights for practitioners and researchers in selecting the most suitable filtering approach for specific IMU-based applications, enhancing the overall quality of motion sensing and analysis.
dc.format.extent5-8
dc.format.pages4
dc.identifier.citationZeng X. Response time in inertial measurement unit control algorithms / Zeng Xinyu, Lysa Olha // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 2. — P. 5–8.
dc.identifier.citationenZeng X. Response time in inertial measurement unit control algorithms / Zeng Xinyu, Lysa Olha // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 2. — P. 5–8.
dc.identifier.doidoi.org/10.23939/istcmtm2024.02.005
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64141
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 2 (85), 2024
dc.relation.ispartofMeasuring Equipment and Metrology, 2 (85), 2024
dc.relation.references[1] A. Norhafizan, G. Raja, N. Khairi, Reviews on Various Inertial Measurement Unit, International Journal of Signal Processing Systems Vol. 1, No. 2 December 2013, pp. 256–261. https://d1wqtxts1xzle7.cloudfront.net/89189534/
dc.relation.references[2] Azis, F. A. , Aras, M. S. M. , Rashid, M. Z. A/, Othman M. N., Abdullah,S.S., Problem Identification for Underwater Remotely Operated Vehicle (ROV): A Case Study, Procedia Engineering, 41 (2012), 554–560, 1877–7058. Int. Symp. on Robotics and Intel. Sensors, 2012 (IRIS 2012) DOI: 10.1016/j.proeng.2012.07.211. https://pdf.sciencedirectassets.com/278653/1-s2.0-S1877705812X00213/1-s2.0-S1877705812026112/main.pdf?X-Amz-Security-
dc.relation.references[3] R. Meinhold, N. Singpurwalla, Understanding the Kalman filter, American Statistician, May 1983, Vol. 37, No. 2, pp. 123–127. http://www-stat.wharton.upenn.edu/~steele/Resources/FTSResources/StateSpaceModels/KFExpositio n/MeinSing83.pdf
dc.relation.references[4] P. Gui, L. Tang and S. Mukhopadhyay, “MEMS based IMU for tilting measurement: Comparison of complementary and kalman filter based data fusion”, 2015 IEEE 10th Conf. on Industr. Electronics and Appl. (ICIEA), Auckland, New Zealand, 2015, pp. 2004–2009, DOI: 10.1109/ICIEA.2015.7334442
dc.relation.references[5] Á. Revuelta. Orientation estimation and movement, Master’s Thesis in Electrical Engineering with emphasis in Signal Processing, 2017, Department of Applied Signal Processing, Blekinge Institute of Technology, SE–371 79, Karlskrona, Sweden. https://www.diva-portal.org/smash/get/diva2:1127455/FULLTEXT02.pdf
dc.relation.references[6] J. Wu, Z. Zhou, J. Chen, R. Li, Fast Complementary Filter for Attitude Estimation Using Low-Cost MARG Sensors, IEEE Sensors Journal, 16(18):1–0,1 Sept. 2016. DOI: 10.1109/JSEN.2016.2589660
dc.relation.references[7] L. Kleeman, Understanding and Applying Kalman Filtering, Department of Electrical and Computer Systems Engineering Monash University, Clayton. https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/kalman/kleeman_understanding_kalman.pdf
dc.relation.referencesen[1] A. Norhafizan, G. Raja, N. Khairi, Reviews on Various Inertial Measurement Unit, International Journal of Signal Processing Systems Vol. 1, No. 2 December 2013, pp. 256–261. https://d1wqtxts1xzle7.cloudfront.net/89189534/
dc.relation.referencesen[2] Azis, F. A. , Aras, M. S. M. , Rashid, M. Z. A/, Othman M. N., Abdullah,S.S., Problem Identification for Underwater Remotely Operated Vehicle (ROV): A Case Study, Procedia Engineering, 41 (2012), 554–560, 1877–7058. Int. Symp. on Robotics and Intel. Sensors, 2012 (IRIS 2012) DOI: 10.1016/j.proeng.2012.07.211. https://pdf.sciencedirectassets.com/278653/1-s2.0-S1877705812X00213/1-s2.0-S1877705812026112/main.pdf?X-Amz-Security-
dc.relation.referencesen[3] R. Meinhold, N. Singpurwalla, Understanding the Kalman filter, American Statistician, May 1983, Vol. 37, No. 2, pp. 123–127. http://www-stat.wharton.upenn.edu/~steele/Resources/FTSResources/StateSpaceModels/KFExpositio n/MeinSing83.pdf
dc.relation.referencesen[4] P. Gui, L. Tang and S. Mukhopadhyay, "MEMS based IMU for tilting measurement: Comparison of complementary and kalman filter based data fusion", 2015 IEEE 10th Conf. on Industr. Electronics and Appl. (ICIEA), Auckland, New Zealand, 2015, pp. 2004–2009, DOI: 10.1109/ICIEA.2015.7334442
dc.relation.referencesen[5] Á. Revuelta. Orientation estimation and movement, Master’s Thesis in Electrical Engineering with emphasis in Signal Processing, 2017, Department of Applied Signal Processing, Blekinge Institute of Technology, SE–371 79, Karlskrona, Sweden. https://www.diva-portal.org/smash/get/diva2:1127455/FULLTEXT02.pdf
dc.relation.referencesen[6] J. Wu, Z. Zhou, J. Chen, R. Li, Fast Complementary Filter for Attitude Estimation Using Low-Cost MARG Sensors, IEEE Sensors Journal, 16(18):1–0,1 Sept. 2016. DOI: 10.1109/JSEN.2016.2589660
dc.relation.referencesen[7] L. Kleeman, Understanding and Applying Kalman Filtering, Department of Electrical and Computer Systems Engineering Monash University, Clayton. https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/kalman/kleeman_understanding_kalman.pdf
dc.relation.urihttps://d1wqtxts1xzle7.cloudfront.net/89189534/
dc.relation.urihttps://pdf.sciencedirectassets.com/278653/1-s2.0-S1877705812X00213/1-s2.0-S1877705812026112/main.pdf?X-Amz-Security-
dc.relation.urihttp://www-stat.wharton.upenn.edu/~steele/Resources/FTSResources/StateSpaceModels/KFExpositio
dc.relation.urihttps://www.diva-portal.org/smash/get/diva2:1127455/FULLTEXT02.pdf
dc.relation.urihttps://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/kalman/kleeman_understanding_kalman.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectIMU
dc.subjectComplementary Filter
dc.subjectKalman Filter
dc.subjectMotion Tracking Accuracy
dc.titleResponse time in inertial measurement unit control algorithms
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v85n2_Zeng_X-Response_time_in_inertial_measurement_5-8.pdf
Size:
861.22 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v85n2_Zeng_X-Response_time_in_inertial_measurement_5-8__COVER.png
Size:
1.28 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: