Recent deformations of the earth's crust in Ukraine based on GNSS network data from GeoTerrace and System.Net

dc.citation.epage68
dc.citation.issue2(37)
dc.citation.journalTitleГеодинаміка
dc.citation.spage56
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorТретяк, Корнилій
dc.contributor.authorБрусак, Іван
dc.contributor.authorБабченко, Володимир
dc.contributor.authorTretyak, Kornyliy
dc.contributor.authorBrusak, Ivan
dc.contributor.authorBabchenko, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T09:56:08Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractУ роботі проаналізовано сучасні тенденції горизонтальних та вертикальних зміщень території України за даними ГНСС-мереж GeoTerrace та System.Net, із побудовою відповідних карт рухів та виділенням зон деформацій верхнього шару земної кори. Об’єктом дослідження є горизонтальні та вертикальні деформації верхнього шару земної кори. Мета – виявлення та аналіз деформаційних зон на території України. Вихідними даними є горизонтальні та вертикальні швидкості зміщень ГНСС-станцій за 2018–2023 рр. мережі GeoTerrace та за 2021–2023 рр. мережі System.Net, відомі тектонічні карти території з Національного атласу України та описові матеріали. Методика передбачає порівняння та аналіз сучасних деформацій земної кори регіону із його відомою тектонічною структурою. У результаті побудовано нові карти сучасних горизонтальних швидкостей зміщень верхнього шару земної кори України як єдиного регіону, а також вертикальних швидкостей зміщень ГНСС-станцій. Встановлено, що сучасні горизонтальні рухи території України є складними та співвідносяться з відомою тектонічною будовою. Їх також порівняно з регіональними модельними значеннями, обчисленими на основі моделі ITRF-2020. Більшість ГНСС-станцій зазнають висотних просідань, імовірно, через денудаційні процеси. Наведено описання сучасних рухів земної кори, але детальна інтерпретація повинна охоплювати додаткові дані спеціалістів із наук про Землю. Визначені швидкості зміщень ГНСС-станцій зі збільшенням часового інтервалу спостережень дадуть можливість встановити особливості просторового розподілу руху земної кори на території України та в майбутньому створити відповідні регіональні геодинамічні моделі кожної тектонічної структури чи окремих регіонів та України загалом, які будуть практично цінними для розвитку точної навігації з використанням точного позиціонування за мережами активних ГНСС-станцій.
dc.description.abstractThe paper analyzes the recent trends of horizontal and vertical displacements of Ukraine’s territory based on the GeoTerrace and System.Net GNSS network data. This includes the construction of relevant movement maps and the selection of deformation zones of the upper crust. The object of research is horizontal and vertical deformations of the upper crust. The goal is to identify and analyze deformation zones in Ukraine’s territory. The source data includes the horizontal and vertical displacement rates of GNSS stations from the GeoTerrace network for 2018 to 2023 and the System.Net network for 2021 to 2023. This data is complemented by known tectonic map of the territory, sourced from the National Atlas of Ukraine, along with descriptive materials. The methodology includes comparison and analysis of recent deformations of the Earth’s crust in the region with its known tectonic structure. New maps of recent horizontal displacement velocities of Ukraine’s upper crust have been created, along with vertical displacement velocities of GNSS stations. These studies indicate that the recent horizontal movements within Ukraine are complex and closely linked to the known tectonic structure. Additionally, these movements were compared with regional model values derived from the ITRF-2020 model. Most GNSS stations have vertical subsidence trend, likely due to denudation processes. This study outlines the recent movements of the Earth’s crust, however, a detailed interpretation should incorporate additional data from specialists in the Earth sciences. When observed over extended time intervals, the measured velocities of GNSS stations will help identify the spatial distribution characteristics of Earth’s crust movement across Ukraine. This, in turn, will facilitate the development of regional geodynamic models for specific tectonic structures or regions, including Ukraine as a whole. Such models hold practical significance for advancing accurate navigation through precise positioning using networks of active GNSS stations.
dc.format.extent56-68
dc.format.pages13
dc.identifier.citationTretyak K. Recent deformations of the earth's crust in Ukraine based on GNSS network data from GeoTerrace and System.Net / Kornyliy Tretyak, Ivan Brusak, Volodymyr Babchenko // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2024. — No 2(37). — P. 56–68.
dc.identifier.citationenTretyak K. Recent deformations of the earth's crust in Ukraine based on GNSS network data from GeoTerrace and System.Net / Kornyliy Tretyak, Ivan Brusak, Volodymyr Babchenko // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2024. — No 2(37). — P. 56–68.
dc.identifier.doidoi.org/10.23939/jgd2024.02.056
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113873
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 2(37), 2024
dc.relation.ispartofGeodynamics, 2(37), 2024
dc.relation.referencesVysotenko R. O. (2010). Determining the rate of velocities of permanent stations, and periodically existing settlements UPN GNSS based on satellite geodetic measurements 1995–2007 period. Modern achievements of geodetic science and production, 1 (19). Lviv, 2010, pp. 80−86 (in Ukrainian). https://vlp.com.ua/taxonomy/term/3164
dc.relation.referencesNovikova, O., Palamar, A., & Petkov, S. (2020, April). Operator service of GNSS networks of Ukraine. In The 12 th International scientific and practical conference“ Impact of modernity on science and practice”, Edmonton, Canada (in Ukrainian). https://isg-konf.com/wp-content/uploads/2020/04/XII-Conference-13-14-Edmonton-Canada.pdf (In Ukrainian)
dc.relation.referencesOrlyuk, M., & Ishchenko, M. (2019a) Analysis of Earth’s surface deformation according to the Global Navigation Satellite Systems data including the newest movements of the territory of Ukraine. Reports of the National Academy of Sciences of Ukraine, 8, 59−68 (in Ukrainian). https://doi.org/10.15407/dopovidi2019.08.059
dc.relation.referencesOrlyuk, M., & Ishchenko, M. (2019b) Comparative analysis of modern deformation and the newest motions of the Earth surface in the territory of Ukraine. Geofizicheskiy zhurnal, 4 (41), 161−181 (in Ukrainian). https://doi.org/10.24028/gzh.0203-3100.v41i4.2019.177381
dc.relation.referencesTretyak, K. & Vovk, A. (2014). Results of determination of horizontal deformation of the Earth crust of Europe according to the data of GNSS observations and their relation with the tectonics structure. Geodynamics, 1(16), 21−33 (in Ukrainian). https://doi.org/10.23939/jgd2014.01.021
dc.relation.referencesUkrainian GNSS network (n. d.) Main Astronomical Observatory of the National Academy of Sciences of Ukraine. Retrieved 01.09.2024, from: http://gnss.mao.kiev.ua/?q=node/1National Atlas of Ukraine (2007). National Academy of Sciences of Ukraine, Institute of Geography, State Service of Geodesy, Cartography and Cadastre; editor-in-chief L. Rudenko; editorial board chairman B. Paton. 435 p. ISBN 978-966-475-067-4.
dc.relation.referencesBrusak, I., & Tretyak, K. (2020, December). About the phenomenon of subsidence in continental Europe in December 2019 based on the GNSS stations data. In International Conference of Young Professionals “GeoTerrace-2020” (Vol. 2020, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. https://doi.org/10.39972214-4609.20205717
dc.relation.referencesBrusak, I., & Tretyak, K. (2021, October). On the impact of non-tidal atmospheric loading on the GNSS stations of regional networks and engineering facilities. In International Conference of Young Professionals “GeoTerrace-2021” (Vol. 2021, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. https://doi.org/103997/2214-4609.20215K3013
dc.relation.referencesBrusak, I., Babchenko, V., Savchuk, N., Marchuk, V., Shkvarok, Y., & Turianytsia, M. (2024). New challenges for exploitation of continuously operating reference GNSS stations during hostilities. Case study of Ukraine. Geodesy Cartography and Aerial Photography, (99), 28−37. https://doi.org/10.23939/istcgcap2024.99.028
dc.relation.referencesDach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS software version 5.2. https://doi.org/10.7892/boris.72297
dc.relation.referencesDavis, J. L., Wernicke, B. P., & Tamisiea, M. E. (2012). On seasonal signals in geodetic time series. Journal of Geophysical Research: Solid Earth, 117(B1). https://doi.org/10.1029/2011JB008690
dc.relation.referencesDesai, S., Bertiger, W., & Gross J. (2016). Introduction to JPL’s GPS time series. California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
dc.relation.referencesDevoti, R., D’Agostino, N., Serpelloni, E., Pietrantonio, G. et al. (2017). A combined velocity field of the Mediterranean region. Ann. Geophys., 60, 2, 2–17. https://doi.org/10.4401/ag-7059
dc.relation.referencesDoskich, S. (2021). Deformations of the land crust of the Carpathian region according to the data of GNSS observation. Geodesy Cartography, and Aerial Photography, 93(1), 35−41. https://doi.org/10.23939/istcgcap2021.93.035
dc.relation.referencesDoskich, S., Savchuk, S., & Dzhuman B. (2023). Determination of horizontal deformation of the Earth's crust on the territory of Ukraine based on GNSS measurements. Geodynamics, 2(35), 89−98. https://doi.org/10.23939/jgd2023.02.089
dc.relation.referencesEsposito, A., Pietrantonio, G., Bruno, V., Anzidei, M., Bonforte, A., Guglielmino, F., ... & Serpelloni, E. (2015). Eighteen years of GPS surveys in the Aeolian Islands (southern Italy): open data archive and velocity field. Ann. Geophys., 58(4), S0439. https://doi.org/10.4401/ag-6823
dc.relation.referencesGAGE Plate Motion Calculator URL: https://www.unavco.org/software/geodetic-utilities/plate-motion-calculator/plate-motion-calculator.html (дата звернення: 01.09.2024).
dc.relation.referencesGruszczynska, M., Klos, A., Rosat, S. and Bogusz, J. (2017). Deriving common seasonal signals in GPS position time series by using Multichannel Singular Spectrum Analysis. Acta Geodyn. Geomater., 14, 3 (187), 273–284. https://doi.org/10.13168/AGG.2017.0010
dc.relation.referencesIshchenko, M. (2016). Determination of velocities of East European stations from GNSS observations at the GNSS data analysis center of the main astronomical observatory, national academy of sciences of Ukraine. Kinematics and Physics of Celestial Bodies, 32(1), 48–53. https://doi.org/10.3103/s0884591316010049
dc.relation.referencesIshchenko, M. (2018). Investigation of deformations of the earth crust on the territory of Ukraine using a GNSS observations. Artificial Satellites, 53(3), 117−126. https://doi.org/10.2478/arsa-2018–0009
dc.relation.referencesKowalczyk, K., Kowalczyk, A. M., & Chojka, A. (2020). Modeling of the vertical movements of the earth's crust in Poland with the co-kriging method based on various sources of data. Applied Sciences, 10 (9), 3004. https://doi.org/10.3390/app10093004
dc.relation.referencesKhoda O. (2024). Estimation of Velocities of Ukrainian GNSS Stations in the IGb08 Reference Frame. Kinematics and Physics of Celestial Bodies, 40(5), 257–268.. https://doi.org/10.3103/S0884591324050039
dc.relation.referencesMaciuk, K., Nistor, S., Brusak, I., Lewińska, P., & Kudrys, J. (2023). Reference clock impact on GNSS clock outliers. Journal of Applied Geodesy, 17(4), 391−396. https://doi.org/10.1515/jag-2023-0007
dc.relation.referencesMarchenko, O., Perii S., Lompas O., Holubinka, Yu., Kramarenko, S., & Salawu, A. (2019). Determination of the horizontal strain rates tensor in Western Ukraine. Geodynamics, 2(27), 5–15. https://doi.org/10.23939/jgd2019.02.005
dc.relation.referencesNaumowicz B., Kowalczyk, K., Pelc-Mieczkowska, R. (2024). PPP solution-based model of absolute vertical movements of the Earth's crust in Poland with consideration of geological, tectonic, hydrological and mineral information. ESS Open Archive. https://doi.org/10.22541/essoar.173046842.26349555/v1
dc.relation.referencesPelc-Mieczkowska, R. (2020). Preliminary Analysis of the Applicability of the GPS PPP Method in Geodynamic Studies. Geomatics and Environmental Engineering, 14(4), 57–68. https://doi.org/10.7494/geom.2020.14.4.57
dc.relation.referencesPiña‐Valdés, J., Socquet, A., Beauval, C., Doin, M. P., D’Agostino, N., & Shen, Z. K. (2022). 3D GNSS velocity field sheds light on the deformation mechanisms in Europe: Effects of the vertical crustal motion on the distribution of seismicity. Journal of Geophysical Research: Solid Earth, 127(6), e2021JB023451. https://doi.org/10.1029/2021JB0-23451
dc.relation.referencesSavchyn, I., & Bilashuk, A. (2023, October). Differentiation of Recent Geodynamic Processes within the Carpathian Mountains Based on GNSS Data. In International Conference of Young Professionals “GeoTerrace-2023” (Vol. 2023, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20235-10011
dc.relation.referencesSavchyn, I., Tretyak, K., Hlotov, V., Shylo, Y., Bubniak, I., Golubinka, I., & Nikulishyn, V. (2021). Recent local geodynamic processes in the Penola Strait – Lemaire Channel fault area (West Antarctica). Acta Geodynamica et Geomaterialia, 18(2), 202, 253–265, 2021. https://doi.org/10.13168/AGG.2021.0018
dc.relation.referencesSavchuk, S., & Doskich, S. (2017). Monitoring of crustal movements in Ukraine using the network of reference GNSS-stations. Geodynamics, 2(23), 7–13. https://doi.org/10.23939/jgd2017.02.007
dc.relation.referencesSiejka, Z. (2017). Evaluation of integration degree of the ASG-EUPOS polish reference networks with Ukrainian GeoTerrace network stations in the border area. Artificial Satellites, 52(3), 71. https://doi.org/10.1515/arsa-2017–0007
dc.relation.referencesTretyak, K., & Brusak, І. (2020). The research of interrelation between seismic activity and modern horisontal movements of the Сarpathian-Balkan region based on the data from permanent GNSS stations. Geodynamics, 1(28), 5–18. https://doi.org/10.23939/jgd2020.01.005
dc.relation.referencesTretyak, K., & Brusak, I. (2021). Method for detecting short-term displacements of the Earth’s surface by statistical analysis of GNSS time series. Geodesy, Cartography, and Aerial Photography, 93(1), 27–34. https://doi.org/10.23939/istcgcap2021.93.027
dc.relation.referencesTretyak, K., & Brusak, І. (2022). Modern deformations of Earth crust of territory of Western Ukraine based on “GEOTERRACE” GNSS network data. Geodynamics, 1(32), 16–25. https://doi.org/10.23939/jgd2022.02.016
dc.relation.referencesTretyak, K., Brusak, І., Bubniak, І., & Zablotskyi, F. (2021a). Impact of non-tidal atmospheric loading on civil engineering structures. Geodynamics, 2(31), 16–28. https://doi.org/10.23939/jgd2021.02.016
dc.relation.referencesTretyak, K., Korliatovych, T., & Brusak, I. (2021b). Applying the statistical method of GNSS time series analysis for the detection of vertical displacements of Dnister HPP-1 dam. In International Conference of Young Professionals “GeoTerrace-2021” (Vol. 2021, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3012
dc.relation.referencesenVysotenko R. O. (2010). Determining the rate of velocities of permanent stations, and periodically existing settlements UPN GNSS based on satellite geodetic measurements 1995–2007 period. Modern achievements of geodetic science and production, 1 (19). Lviv, 2010, pp. 80−86 (in Ukrainian). https://vlp.com.ua/taxonomy/term/3164
dc.relation.referencesenNovikova, O., Palamar, A., & Petkov, S. (2020, April). Operator service of GNSS networks of Ukraine. In The 12 th International scientific and practical conference" Impact of modernity on science and practice", Edmonton, Canada (in Ukrainian). https://isg-konf.com/wp-content/uploads/2020/04/XII-Conference-13-14-Edmonton-Canada.pdf (In Ukrainian)
dc.relation.referencesenOrlyuk, M., & Ishchenko, M. (2019a) Analysis of Earth’s surface deformation according to the Global Navigation Satellite Systems data including the newest movements of the territory of Ukraine. Reports of the National Academy of Sciences of Ukraine, 8, 59−68 (in Ukrainian). https://doi.org/10.15407/dopovidi2019.08.059
dc.relation.referencesenOrlyuk, M., & Ishchenko, M. (2019b) Comparative analysis of modern deformation and the newest motions of the Earth surface in the territory of Ukraine. Geofizicheskiy zhurnal, 4 (41), 161−181 (in Ukrainian). https://doi.org/10.24028/gzh.0203-3100.v41i4.2019.177381
dc.relation.referencesenTretyak, K. & Vovk, A. (2014). Results of determination of horizontal deformation of the Earth crust of Europe according to the data of GNSS observations and their relation with the tectonics structure. Geodynamics, 1(16), 21−33 (in Ukrainian). https://doi.org/10.23939/jgd2014.01.021
dc.relation.referencesenUkrainian GNSS network (n. d.) Main Astronomical Observatory of the National Academy of Sciences of Ukraine. Retrieved 01.09.2024, from: http://gnss.mao.kiev.ua/?q=node/1National Atlas of Ukraine (2007). National Academy of Sciences of Ukraine, Institute of Geography, State Service of Geodesy, Cartography and Cadastre; editor-in-chief L. Rudenko; editorial board chairman B. Paton. 435 p. ISBN 978-966-475-067-4.
dc.relation.referencesenBrusak, I., & Tretyak, K. (2020, December). About the phenomenon of subsidence in continental Europe in December 2019 based on the GNSS stations data. In International Conference of Young Professionals "GeoTerrace-2020" (Vol. 2020, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. https://doi.org/10.39972214-4609.20205717
dc.relation.referencesenBrusak, I., & Tretyak, K. (2021, October). On the impact of non-tidal atmospheric loading on the GNSS stations of regional networks and engineering facilities. In International Conference of Young Professionals "GeoTerrace-2021" (Vol. 2021, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. https://doi.org/103997/2214-4609.20215K3013
dc.relation.referencesenBrusak, I., Babchenko, V., Savchuk, N., Marchuk, V., Shkvarok, Y., & Turianytsia, M. (2024). New challenges for exploitation of continuously operating reference GNSS stations during hostilities. Case study of Ukraine. Geodesy Cartography and Aerial Photography, (99), 28−37. https://doi.org/10.23939/istcgcap2024.99.028
dc.relation.referencesenDach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS software version 5.2. https://doi.org/10.7892/boris.72297
dc.relation.referencesenDavis, J. L., Wernicke, B. P., & Tamisiea, M. E. (2012). On seasonal signals in geodetic time series. Journal of Geophysical Research: Solid Earth, 117(B1). https://doi.org/10.1029/2011JB008690
dc.relation.referencesenDesai, S., Bertiger, W., & Gross J. (2016). Introduction to JPL’s GPS time series. California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
dc.relation.referencesenDevoti, R., D’Agostino, N., Serpelloni, E., Pietrantonio, G. et al. (2017). A combined velocity field of the Mediterranean region. Ann. Geophys., 60, 2, 2–17. https://doi.org/10.4401/ag-7059
dc.relation.referencesenDoskich, S. (2021). Deformations of the land crust of the Carpathian region according to the data of GNSS observation. Geodesy Cartography, and Aerial Photography, 93(1), 35−41. https://doi.org/10.23939/istcgcap2021.93.035
dc.relation.referencesenDoskich, S., Savchuk, S., & Dzhuman B. (2023). Determination of horizontal deformation of the Earth's crust on the territory of Ukraine based on GNSS measurements. Geodynamics, 2(35), 89−98. https://doi.org/10.23939/jgd2023.02.089
dc.relation.referencesenEsposito, A., Pietrantonio, G., Bruno, V., Anzidei, M., Bonforte, A., Guglielmino, F., ... & Serpelloni, E. (2015). Eighteen years of GPS surveys in the Aeolian Islands (southern Italy): open data archive and velocity field. Ann. Geophys., 58(4), S0439. https://doi.org/10.4401/ag-6823
dc.relation.referencesenGAGE Plate Motion Calculator URL: https://www.unavco.org/software/geodetic-utilities/plate-motion-calculator/plate-motion-calculator.html (Date of appeal: 01.09.2024).
dc.relation.referencesenGruszczynska, M., Klos, A., Rosat, S. and Bogusz, J. (2017). Deriving common seasonal signals in GPS position time series by using Multichannel Singular Spectrum Analysis. Acta Geodyn. Geomater., 14, 3 (187), 273–284. https://doi.org/10.13168/AGG.2017.0010
dc.relation.referencesenIshchenko, M. (2016). Determination of velocities of East European stations from GNSS observations at the GNSS data analysis center of the main astronomical observatory, national academy of sciences of Ukraine. Kinematics and Physics of Celestial Bodies, 32(1), 48–53. https://doi.org/10.3103/s0884591316010049
dc.relation.referencesenIshchenko, M. (2018). Investigation of deformations of the earth crust on the territory of Ukraine using a GNSS observations. Artificial Satellites, 53(3), 117−126. https://doi.org/10.2478/arsa-2018–0009
dc.relation.referencesenKowalczyk, K., Kowalczyk, A. M., & Chojka, A. (2020). Modeling of the vertical movements of the earth's crust in Poland with the co-kriging method based on various sources of data. Applied Sciences, 10 (9), 3004. https://doi.org/10.3390/app10093004
dc.relation.referencesenKhoda O. (2024). Estimation of Velocities of Ukrainian GNSS Stations in the IGb08 Reference Frame. Kinematics and Physics of Celestial Bodies, 40(5), 257–268.. https://doi.org/10.3103/S0884591324050039
dc.relation.referencesenMaciuk, K., Nistor, S., Brusak, I., Lewińska, P., & Kudrys, J. (2023). Reference clock impact on GNSS clock outliers. Journal of Applied Geodesy, 17(4), 391−396. https://doi.org/10.1515/jag-2023-0007
dc.relation.referencesenMarchenko, O., Perii S., Lompas O., Holubinka, Yu., Kramarenko, S., & Salawu, A. (2019). Determination of the horizontal strain rates tensor in Western Ukraine. Geodynamics, 2(27), 5–15. https://doi.org/10.23939/jgd2019.02.005
dc.relation.referencesenNaumowicz B., Kowalczyk, K., Pelc-Mieczkowska, R. (2024). PPP solution-based model of absolute vertical movements of the Earth's crust in Poland with consideration of geological, tectonic, hydrological and mineral information. ESS Open Archive. https://doi.org/10.22541/essoar.173046842.26349555/v1
dc.relation.referencesenPelc-Mieczkowska, R. (2020). Preliminary Analysis of the Applicability of the GPS PPP Method in Geodynamic Studies. Geomatics and Environmental Engineering, 14(4), 57–68. https://doi.org/10.7494/geom.2020.14.4.57
dc.relation.referencesenPiña‐Valdés, J., Socquet, A., Beauval, C., Doin, M. P., D’Agostino, N., & Shen, Z. K. (2022). 3D GNSS velocity field sheds light on the deformation mechanisms in Europe: Effects of the vertical crustal motion on the distribution of seismicity. Journal of Geophysical Research: Solid Earth, 127(6), e2021JB023451. https://doi.org/10.1029/2021JB0-23451
dc.relation.referencesenSavchyn, I., & Bilashuk, A. (2023, October). Differentiation of Recent Geodynamic Processes within the Carpathian Mountains Based on GNSS Data. In International Conference of Young Professionals "GeoTerrace-2023" (Vol. 2023, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20235-10011
dc.relation.referencesenSavchyn, I., Tretyak, K., Hlotov, V., Shylo, Y., Bubniak, I., Golubinka, I., & Nikulishyn, V. (2021). Recent local geodynamic processes in the Penola Strait – Lemaire Channel fault area (West Antarctica). Acta Geodynamica et Geomaterialia, 18(2), 202, 253–265, 2021. https://doi.org/10.13168/AGG.2021.0018
dc.relation.referencesenSavchuk, S., & Doskich, S. (2017). Monitoring of crustal movements in Ukraine using the network of reference GNSS-stations. Geodynamics, 2(23), 7–13. https://doi.org/10.23939/jgd2017.02.007
dc.relation.referencesenSiejka, Z. (2017). Evaluation of integration degree of the ASG-EUPOS polish reference networks with Ukrainian GeoTerrace network stations in the border area. Artificial Satellites, 52(3), 71. https://doi.org/10.1515/arsa-2017–0007
dc.relation.referencesenTretyak, K., & Brusak, I. (2020). The research of interrelation between seismic activity and modern horisontal movements of the Sarpathian-Balkan region based on the data from permanent GNSS stations. Geodynamics, 1(28), 5–18. https://doi.org/10.23939/jgd2020.01.005
dc.relation.referencesenTretyak, K., & Brusak, I. (2021). Method for detecting short-term displacements of the Earth’s surface by statistical analysis of GNSS time series. Geodesy, Cartography, and Aerial Photography, 93(1), 27–34. https://doi.org/10.23939/istcgcap2021.93.027
dc.relation.referencesenTretyak, K., & Brusak, I. (2022). Modern deformations of Earth crust of territory of Western Ukraine based on "GEOTERRACE" GNSS network data. Geodynamics, 1(32), 16–25. https://doi.org/10.23939/jgd2022.02.016
dc.relation.referencesenTretyak, K., Brusak, I., Bubniak, I., & Zablotskyi, F. (2021a). Impact of non-tidal atmospheric loading on civil engineering structures. Geodynamics, 2(31), 16–28. https://doi.org/10.23939/jgd2021.02.016
dc.relation.referencesenTretyak, K., Korliatovych, T., & Brusak, I. (2021b). Applying the statistical method of GNSS time series analysis for the detection of vertical displacements of Dnister HPP-1 dam. In International Conference of Young Professionals "GeoTerrace-2021" (Vol. 2021, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3012
dc.relation.urihttps://vlp.com.ua/taxonomy/term/3164
dc.relation.urihttps://isg-konf.com/wp-content/uploads/2020/04/XII-Conference-13-14-Edmonton-Canada.pdf
dc.relation.urihttps://doi.org/10.15407/dopovidi2019.08.059
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v41i4.2019.177381
dc.relation.urihttps://doi.org/10.23939/jgd2014.01.021
dc.relation.urihttp://gnss.mao.kiev.ua/?q=node/1National
dc.relation.urihttps://doi.org/10.39972214-4609.20205717
dc.relation.urihttps://doi.org/103997/2214-4609.20215K3013
dc.relation.urihttps://doi.org/10.23939/istcgcap2024.99.028
dc.relation.urihttps://doi.org/10.7892/boris.72297
dc.relation.urihttps://doi.org/10.1029/2011JB008690
dc.relation.urihttps://doi.org/10.4401/ag-7059
dc.relation.urihttps://doi.org/10.23939/istcgcap2021.93.035
dc.relation.urihttps://doi.org/10.23939/jgd2023.02.089
dc.relation.urihttps://doi.org/10.4401/ag-6823
dc.relation.urihttps://www.unavco.org/software/geodetic-utilities/plate-motion-calculator/plate-motion-calculator.html
dc.relation.urihttps://doi.org/10.13168/AGG.2017.0010
dc.relation.urihttps://doi.org/10.3103/s0884591316010049
dc.relation.urihttps://doi.org/10.2478/arsa-2018–0009
dc.relation.urihttps://doi.org/10.3390/app10093004
dc.relation.urihttps://doi.org/10.3103/S0884591324050039
dc.relation.urihttps://doi.org/10.1515/jag-2023-0007
dc.relation.urihttps://doi.org/10.23939/jgd2019.02.005
dc.relation.urihttps://doi.org/10.22541/essoar.173046842.26349555/v1
dc.relation.urihttps://doi.org/10.7494/geom.2020.14.4.57
dc.relation.urihttps://doi.org/10.1029/2021JB0-23451
dc.relation.urihttps://doi.org/10.3997/2214-4609.20235-10011
dc.relation.urihttps://doi.org/10.13168/AGG.2021.0018
dc.relation.urihttps://doi.org/10.23939/jgd2017.02.007
dc.relation.urihttps://doi.org/10.1515/arsa-2017–0007
dc.relation.urihttps://doi.org/10.23939/jgd2020.01.005
dc.relation.urihttps://doi.org/10.23939/istcgcap2021.93.027
dc.relation.urihttps://doi.org/10.23939/jgd2022.02.016
dc.relation.urihttps://doi.org/10.23939/jgd2021.02.016
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215K3012
dc.rights.holder© Національний університет “Львівська політехніка”, 2024; © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2024
dc.rights.holder© K. Tretyak, I. Brusak, V. Babchenko
dc.subjectсучасна геодинаміка
dc.subjectдеформації земної кори
dc.subjectгоризонтальні рухи земної кори
dc.subjectвертикальні рухи земної кори
dc.subjectшвидкості зміщень ГНСС-станцій
dc.subjectГНСС-мережа
dc.subjectГНСС-мережа GeoTerrace
dc.subjectГНСС-мережа SystemNet
dc.subjectУкраїна
dc.subjectУкраїнський щит
dc.subjectКарпати
dc.subjectrecent geodynamics
dc.subjectdeformations of the Earth’s crust
dc.subjecthorizontal movements of the Earth’s crust
dc.subjectvertical movements of the Earth’s crust
dc.subjectdisplacement rates of GNSS stations
dc.subjectGNSS network
dc.subjectGNSS network GeoTerrace
dc.subjectGNSS network SystemNet
dc.subjectUkraine
dc.subjectUkrainian Shield
dc.subjectthe Carpathians
dc.subject.udc551.24
dc.subject.udc528.22
dc.titleRecent deformations of the earth's crust in Ukraine based on GNSS network data from GeoTerrace and System.Net
dc.title.alternativeСучасні деформації земної кори території України за даними ГНСС-мереж GeoTerrace та System.Net
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024n2_37__Tretyak_K-Recent_deformations_of_the_56-68.pdf
Size:
937.28 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024n2_37__Tretyak_K-Recent_deformations_of_the_56-68__COVER.png
Size:
532.18 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: