A GIS-based Fuzzy Multi-Criteria Analysis Approach to Industrial Site Selection

dc.citation.epage20
dc.citation.issue3
dc.citation.journalTitleEcontechmod
dc.citation.spage15
dc.citation.volume8
dc.contributor.affiliationOdessa State Environmental University
dc.contributor.authorBuchynska, I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-05-08T07:19:08Z
dc.date.available2020-05-08T07:19:08Z
dc.date.created2019-03-20
dc.date.issued2019-03-20
dc.description.abstractThe paper proposes a methodology for fuzzy multi-criteria analysis of decisions in a raster-based geographical information system (GIS) to determine the optimal locations for territorial objects. Recommendations about the stages of choosing alternatives for spatial and non-spatial constraints are given. It is shown that the fuzzyfication of criteria, that is, the conversion of their attribute values into a fuzzy set, based on expert evaluation of a fuzzy membership function, allows screening alternatives by determining thresholds of alpha-cut of fuzzy sets for each criterion, followed by combining criteria attributes using aggregation operators: minimum, maximum, weighted sum, OWA operator Jager. Adding to the procedure of multicriteria analysis of the additional stage of filtration of alternatives gives the opportunity to reduce the number of alternatives, and in the future and the processing time of the criteria layers by aggregator operators. The proposed algorithm for screening alternatives can be performed in a GIS environment using Fuzzy Membership, Overlay and raster calculators tools.
dc.format.extent15-20
dc.format.pages6
dc.identifier.citationBuchynska I. A GIS-based Fuzzy Multi-Criteria Analysis Approach to Industrial Site Selection / I. Buchynska // Econtechmod. — Lviv : University of Engineering and Economics in Rzeszow, 2019. — Vol 8. — No 3. — P. 15–20.
dc.identifier.citationenBuchynska I. A GIS-based Fuzzy Multi-Criteria Analysis Approach to Industrial Site Selection / I. Buchynska // Econtechmod. — Lviv : University of Engineering and Economics in Rzeszow, 2019. — Vol 8. — No 3. — P. 15–20.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/49586
dc.language.isoen
dc.publisherUniversity of Engineering and Economics in Rzeszow
dc.relation.ispartofEcontechmod, 3 (8), 2019
dc.relation.ispartofEcontechmod, 3 (8), 2019
dc.relation.references1. Chakhar S., Mousseau V. 2008. Spatial multicriteria decision making. In Encyclopedia of GIS, SpringerVerlag, New York, 2008. pp. 747–753.
dc.relation.references2. Katrenko A., Antoniak T. 2011. The problem of optimal object accommodation by means of simulation modeling. In Bulletin of the National University “Lviv Polytechnic”. Information Systems and Networks, vol. 715, pp. 150–163.
dc.relation.references3. Sergiyenko I. 1988. Mathematical models and methods for solving discrete optimization problems, Kyiv : Nauk. dumka, p. 471.
dc.relation.references4. Simon H. 1973. The Structure of Ill-structured Problems. Artificial Intelligence. Vol. 4. pp. 181–202.
dc.relation.references5. Zadeh L. 1965. Fuzzy sets. Information and Control, vol. 8, No. 3, pp. 338–353.
dc.relation.references6. Malczewski J. 2004. GIS-based land-use suitability analysis: a critical overview. Progress in Planning, Vol. 62, pp. 3–6.
dc.relation.references7. Malczewski J. 2006. GIS-based multicriteria decision analysis: a survey of the literature,” International Geographical Information Science, Vol. 20(7). pp. 703–726.
dc.relation.references8. Kuznichenko S., Gunchenko Yu., Buchynska I. 2018. Fuzzy model of geospatial data processing in multicriteria suitability analysis. Collection of scientific works of the Military Institute of Kyiv National Taras Shevchenko University, Vol. 61, pp. 90–103.
dc.relation.references9. Rikalovic A., Cosic I., Lazarevic D. 2014. GIS Based Multi-Criteria Analysis for Industrial Site Selection. Procedia Engineering Vol. 69, pp. 1054–1063.
dc.relation.references10. Saaty T. 1980. The analytic hierarchy process: Planning, priority setting, resources allocation. New York, NY: McGraw, 287 p.
dc.relation.references11. Kuznichenko S., Kovalenko L., Buchynska I., and Gunchenko Y. 2018. Development of a multi-criteria model for making decisions on the location of solid waste landfills. EasternEuropean Journal of Enterprise Technologies, Vol. 2, No. 3(92), pp. 21–31. DOI: 10.15587/1729-4061.2018.129287
dc.relation.references12. Yager R. 1988. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on System, Man, and Cybernetics, Vol. 18, pp. 183–190.
dc.relation.references13. Malczewski J. 1999. GIS and multicriteria decision analysis. John Wiley & Sons, NY, 392 p.
dc.relation.referencesen1. Chakhar S., Mousseau V. 2008. Spatial multicriteria decision making. In Encyclopedia of GIS, SpringerVerlag, New York, 2008. pp. 747–753.
dc.relation.referencesen2. Katrenko A., Antoniak T. 2011. The problem of optimal object accommodation by means of simulation modeling. In Bulletin of the National University "Lviv Polytechnic". Information Systems and Networks, vol. 715, pp. 150–163.
dc.relation.referencesen3. Sergiyenko I. 1988. Mathematical models and methods for solving discrete optimization problems, Kyiv : Nauk. dumka, p. 471.
dc.relation.referencesen4. Simon H. 1973. The Structure of Ill-structured Problems. Artificial Intelligence. Vol. 4. pp. 181–202.
dc.relation.referencesen5. Zadeh L. 1965. Fuzzy sets. Information and Control, vol. 8, No. 3, pp. 338–353.
dc.relation.referencesen6. Malczewski J. 2004. GIS-based land-use suitability analysis: a critical overview. Progress in Planning, Vol. 62, pp. 3–6.
dc.relation.referencesen7. Malczewski J. 2006. GIS-based multicriteria decision analysis: a survey of the literature," International Geographical Information Science, Vol. 20(7). pp. 703–726.
dc.relation.referencesen8. Kuznichenko S., Gunchenko Yu., Buchynska I. 2018. Fuzzy model of geospatial data processing in multicriteria suitability analysis. Collection of scientific works of the Military Institute of Kyiv National Taras Shevchenko University, Vol. 61, pp. 90–103.
dc.relation.referencesen9. Rikalovic A., Cosic I., Lazarevic D. 2014. GIS Based Multi-Criteria Analysis for Industrial Site Selection. Procedia Engineering Vol. 69, pp. 1054–1063.
dc.relation.referencesen10. Saaty T. 1980. The analytic hierarchy process: Planning, priority setting, resources allocation. New York, NY: McGraw, 287 p.
dc.relation.referencesen11. Kuznichenko S., Kovalenko L., Buchynska I., and Gunchenko Y. 2018. Development of a multi-criteria model for making decisions on the location of solid waste landfills. EasternEuropean Journal of Enterprise Technologies, Vol. 2, No. 3(92), pp. 21–31. DOI: 10.15587/1729-4061.2018.129287
dc.relation.referencesen12. Yager R. 1988. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on System, Man, and Cybernetics, Vol. 18, pp. 183–190.
dc.relation.referencesen13. Malczewski J. 1999. GIS and multicriteria decision analysis. John Wiley & Sons, NY, 392 p.
dc.rights.holder© Copyright by Lviv Polytechnic National University
dc.rights.holder© Copyright by University of Engineering and Economics in Rzeszow
dc.subjectgeographic information systems
dc.subjectmultiplecriteria decision analysis
dc.subjectfuzzy set theory
dc.subjectalpha-cut
dc.subjectsite selection
dc.titleA GIS-based Fuzzy Multi-Criteria Analysis Approach to Industrial Site Selection
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v8n3_Buchynska_I-A_GIS_based_Fuzzy_Multi_15-20.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v8n3_Buchynska_I-A_GIS_based_Fuzzy_Multi_15-20__COVER.png
Size:
401.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.94 KB
Format:
Plain Text
Description: