Opportunities of wet-handled coal bottom ash us in binding materials: a review

dc.citation.epage24
dc.citation.issue1
dc.citation.journalTitleТеорія і практика будівництва
dc.citation.spage17
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСоболь, Х. С.
dc.contributor.authorМарущак, Р. Д.
dc.contributor.authorSobol, Khrystyna
dc.contributor.authorMarushchak, Roman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-23T06:11:55Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractПортландцемент залишається основним в’яжучим для забезпечення потреб зведення будівель та будівництва сучасної інфраструктури у всьому світі. Проте його виробництво є високоенергоємним та високоемісійним процесом, на який припадає понад 5 % світових викидів СО2. Індустрія сталого будівництва зосереджена на впровадженні нових екологічно чистих рішень, пов’язаних із заміною традиційних матеріалів із високим вуглецевим слідом. Зменшення вмісту клінкеру в портландцементі стає першочерговим завданням, що відображено в дорожніх картах сталого розвитку цементної галузі європейських країн. Цей факт спонукає до пошуків і дій у різних напрямах, таких як удосконалення технологій помелу, розроблення хімічних добавок і розширення видів цементів із підвищеним вмістом мінеральних добавок із можливістю використання продуктів техногенного походження. Традиційною гідравлічною мінеральною добавкою у портландцементі є мелений гранульований доменний шлак, який є побічним продуктом виробництва сталі. Невдовзі обсягу доменного шлаку буде недостатньо, щоб задовольнити потребу будівельної галузі у мінеральних добавках, що спричинено зростанням попиту на шлак та зменшенням його кількості внаслідок зупинки деяких сталеливарних заводів, що використовують технологію з інтенсивним викидом CO2. Тому розширення асортименту мінеральних добавок пуцоланічної дії, які є відходами промисловості, є першочерговим завданням для вирішення проблем цементної галузі, а також екологічних проблем їх зберігання. Все частіше в будівельних технологіях використовують матеріали, які порівняно недавно не становили цінності як мінеральні добавки через наявність легших варіантів. У статті розглянуто аспекти використання золошлакових матеріалів, яких в Україні на друге півріччя 2019 р. накопичилося у відвалах ТЕС близько 360 млн т, як мінеральної добавки для одержання в’яжучих.
dc.description.abstractNowadays conventional binding material for the construction sector is Portland cement. Portland cement consists mainly of high-energy intensive with a significant carbon footprint Portland cement clinker. Reduction of clinker content in binding materials becomes the utmost priority for scientists in the field, it is reflected in manufacturers’ Sustainability Road Maps. This fact triggers searches and actions in different directions such as improving grinding technologies, chemical additives and admixtures development, and extension of the cementitious portfolio itself to increase the availability of raw materials. More and more often in construction technologies materials that relatively recently did not represent a value as cementitious due to the availability of more easy options, are being used. This article considers opportunities and aspects of wet-handled coal bottom ash use from thermal power stations.
dc.format.extent17-24
dc.format.pages8
dc.identifier.citationSobol K. Opportunities of wet-handled coal bottom ash us in binding materials: a review / Khrystyna Sobol, Roman Marushchak // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 17–24.
dc.identifier.citationenSobol K. Opportunities of wet-handled coal bottom ash us in binding materials: a review / Khrystyna Sobol, Roman Marushchak // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 17–24.
dc.identifier.doidoi.org/10.23939/jtbp2024.01.017
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111474
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія і практика будівництва, 1 (6), 2024
dc.relation.ispartofTheory and Building Practice, 1 (6), 2024
dc.relation.referencesAttia, S., Kosiński, P., Wójcik, R., Węglarz, A., Koc, D., & Laurent, O. (2022). Energy efficiency in the polish residential building stock: A literature review. Journal of Building Engineering, 45, 103461. DOI:10.1016/j.jobe.2021.103461.
dc.relation.referencesKhan, K., Salami, B. A., Iqbal, M., Amin, M. N., Ahmed, F., & Jalal, F. E. (2022). Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models. Materials, 15, 3722. https://doi.org/10.3390/ma15103722.
dc.relation.referencesCarbon Neutrality Roadmap 2050 https://cembureau.eu/library/reports/2050-carbon-neutrality-roadmap/.
dc.relation.referencesSanytsky, M., Sobol, K., Shcturmay, M., & Khymko O. (2011). Low Energy Consuming Modified Composite Cements and their Properties. Chemistry & Chemical Technology, 5, 227. https://doi.org/10.23939/chcht05.02.227.
dc.relation.referencesScrivener, K.L., John, V.M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
dc.relation.referencesSroda, B. (2020). The cement industry on the road to the Green Deal. Construction, Architecture Technologies, 3, 68–74 (in Polish). bwmeta1.element.baztech-8fe7721f-eadb-432d-b91d-8997cc14e7d6.
dc.relation.referencesResponsible and visionary: CO2-Roadmap, https://www.zement.at/service/presse/33-2022/378-roadmap
dc.relation.referencesStevulova, N., Strigac, J., Junak, J., Terpakova, E., & Holub, M. (2021). Incorporation of Cement Bypass Dust in Hydraulic Road Binder. Materials, 14, 41. https://dx.doi.org/10.3390/ma14010041.
dc.relation.referencesKuterasińska, J., & Król, A. (2016). New types of low-carbon cements with reduced Portland clinker content as a result of ecological actions of cement industry towards sustainable development. Economic and Environmental Studies (E&ES), 16, 3, 403–419. https://www.econstor.eu/bitstream/10419/178925/1/ees_16_3_05.pdf.
dc.relation.referencesSanytsky, M., Kropyvnytska, T., Fic, S., & Ivashchyshyn, H. (2020). Sustainable low-carbon binders and concretes. E3S Web of Conferences, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007.
dc.relation.referencesBatog M., Bakalarz J., Synowiec K., & Dziuk D. (2022). The use of multi-component cements in construction. Construction, Architecture Technologies, 3, 66–73 (in Polish) https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5-bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5
dc.relation.referencesSnellings R., Suraneni P., & Skibsted J. (2023). Future and emerging supplementary cementitious materials. Cement and Concrete Research, 171, 107199. https://doi.org/10.1016/j.cemconres.2023.107199.
dc.relation.referencesJuenger, M. C. G., Snellings, R., & Bernal, S. A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 122, 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008
dc.relation.referencesTkaczewska, E. (2019). The influence of cement bypass dust on the properties of cement curing under normal and autoclave conditions. Structure and Environment, 11, 5–22. DOI: 10.30540/sae-2019-001
dc.relation.referencesAmin, M.N., Hissan, S., Shahzada, K., Khan, K., & Bibi, T. (2019). Pozzolanic Reactivity and the Influence of Rice Husk Ash on Early-Age Autogenous Shrinkage of Concrete. Frontiers in Materials, 6, 150. DOI: 10.3389/fmats.2019.00150.
dc.relation.referencesOdubela, C. A., & Oluwatobi, G. A. (2022). Properties of Laterized Concrete Incorporating Sawdust Ash as A Partial Replacement for Cement. Journal of Civil Engineering Research & Technology, 4(2), 1–6. DOI: doi.org/10.47363/JCERT/2022(4)128.
dc.relation.referencesTeixeiraa, E. R., Camõesa, A., & Brancob, F. G. (2019). Valorisation of wood fly ash on concrete. Resources, Conservation & Recycling, 145, 292–310. DOI:10.1016/j.resconrec.2019.02.028.
dc.relation.referencesSobol, K., Solodkyy, S., Petrovska, N., Belov, S., Hunyak, O., & Hidei, V. (2020). Chemical composition and hydraulic properties of incinerated wastepaper sludge. Chemistry & Chemical Technology, 14(4), 538–544. https://doi.org/10.23939/chcht14.04.538
dc.relation.referencesHunyak, O., Hidei, V., Sobol, K. & Petrovska, N. (2023). Valorization of Wastepaper Sludge Ash as Supplementary Cementitious Material in Concrete. Lecture Notes in Civil Engineering, 290, 94–100. DOI: 10.1007/978-3-031-14141-6_10.
dc.relation.referencesNazar, A. M. Md, Abas, N. F., & Othuman Mydin, M. A. (2014). Study on the Utilization of Paper Mill Sludge as Partial Cement Replacement in Concrete. MATEC Web of Conferences, 10, 02001. DOI: 10.1051/matecconf/20141002001.
dc.relation.referencesYevropeiska biznes asotsiatsiia (2021). Vykorystannia zoloshlakovykh produktiv i hirnychoi porody v dorozhnomu budivnytstvi. Yevropeiskyi dosvid i mozhlyvosti dlia Ukrainy. URL: https://eba.com.ua/wpcontent/uploads/2021/05/White_Paper_Slag-_in_road_construction.pdf
dc.relation.referencesIzquierdo, M. & Querol, X. (2012). Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology, 94, 54–66. https://doi.org/10.1016/j.coal.2011.10.006.
dc.relation.referencesCheriaf, M., Cavalcante, J. & Pera, J. (1999). Pozzolanic properties of pulverized coal combustion bottom ash. Cement and Concrete Research, 29, 29 9, 387–1391. https://doi.org/10.1016/S0008-8846(99)00098-8.
dc.relation.referencesAdinugroho, T. P., Ayuningtyas, U., Anggraeni, P., Febriansyah, H., Susila, M. A. D., Sasongko N. A. & Darmayanti N. T. E. (2022). Life cycle assessment of fly ash bottom ash in coal power plants: A review. IOP Conf. Series: Earth and Environmental Science, 1108, 012035. DOI: 10.1088/1755-1315/1108/1/012035.
dc.relation.referencesTirkeş, S. (2021). Utilization of wet-handled and dry-handled coal bottom ashes in Portland cement based composites. M.S.-Master of Science, Middle East Technical University. https://hdl.handle.net/11511/94324. Cheeratot, R. & Jaturapitakkul, C. (2004). A Study of Disposed Fly Ash from Landfill to Replace Portland Cement. Waste Management, 24, 7, 701–709. DOI: 10.1016/j.wasman.2004.02.003.
dc.relation.referencesSaengsov, W., Nguyen, T., Chatchawan, R., & Tangtermsirikul S. (2016). Effect of Moisture Content of Wet Fly Ash on Basic Properties of Mortar and Concrete. Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA, 779–786. DOI: 10.18552/2016/SCMT4S247.
dc.relation.referencesKrivenko, P., Gots, V., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O., & Kovalchuk, A. (2019). Development of solutions concerning regulation of proper deformations in alkali-activated cements. Eastern European Journal of Enterprise Technologies, 5/6, 24–32. DOI: 10.15587/1729-4061.2019.181150.
dc.relation.referencesZheng, X., & Wu, J. (2021). Early Strength Development of Soft Clay Stabilized by One-Part Ground Granulated Blast Furnace Slag and Fly Ash-Based Geopolymer. Frontiers in Materials, 8, 616430. DOI: 10.3389/fmats.2021.616430.
dc.relation.referencesLiu, J., Wang, Z., Xie, G., Li, Z., Fan, X., Zhang, W., & Ren, J. (2022). Resource utilization of municipal solid waste incineration fly ash-cement and alkali-activated cementitious materials: A review. Science of The Total Environment, 158254. Doi.org/10.1016/j.scitotenv.2022.158254.
dc.relation.referencesAkmalaiuly, K., Berdikul, N., Pundienė, I., & Pranckevičienė, J. (2023). The Effect of Mechanical Activation of Fly Ash on Cement-Based Materials Hydration and Hardened State Properties. Materials (Basel),16(8), 2959. doi: 10.3390/ma16082959.
dc.relation.referencesShi, P., & Huang, B. (2023). Preparation of Cementitious Material with Wet Fly Ash by Hydrothermal Reaction and Calcination. Applied Sciences, 13, 1768. https://doi.org/10.3390/app13031768.
dc.relation.referencesGuerrero, A., Goñi, S., Campillo, I., & Moragues, A. (2004). Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters. Environmental Science and Technology, 38, 3209–3213. DOI: 10.1021/es0351589.
dc.relation.referencesDeraman, L. M., Abdullah, M. M. A. B., Ming, L. Y., Hussin, K., Yahya, Z., & Kadir, A. A. (2015). Utilization of bottom ash for Alkali-activated (SI-AL) materials: A review. ARPN Journal of Engineering and Applied Sciences, 10, 8, 8351–8357.
dc.relation.referencesMazouzi, W., Kacimi, L., Cyr, M., & Clastres, P. (2014). Properties of low temperature belite cements made from aluminosilicate wastes by hydrothermal method. Cement and Concrete Composites, 53, 170–177. https://doi.org/10.1016/j.cemconcomp.2014.07.001.
dc.relation.referencesNovytskyi, Y., Yatsenko, V., & Topylko, N. (2022). Prerequisites for the implementation of the European experience in the use of ash-slag materials in the construction of highways: A review. Theory and Building Practice, 4, 2, 90–97. https://doi.org/10.23939/jtbp2022.02.090.
dc.relation.referencesMozghovyi, V. V., Puhach, M. O., Mozghova, L. A., Kutsman, O. M., Chyzhenko, N. P., & Sokoliuk M. Yu. (2014). Napriamky zastosuvannia zoloshlakiv TES u budivnytstvi avtomobilnykh dorih. Visnyk Natsionalnoho transportnoho universytetu, (29 (1)), 199–205 (in Ukraine). http://nbuv.gov.ua/UJRN/Vntu_2014_29(1)__26.
dc.relation.referencesKhan, K., Ashfaq, M., Iqbal, M., Khan, M A., Amin, M. N., Shalabi, F. I. … Jalal, F. E. (2022). Multi Expression Programming Model for Strength Prediction of Fly-Ash-Treated Alkali-Contaminated Soils. Materials, 15, 4025. https://doi.org/10.3390/ma15114025.
dc.relation.referencesenAttia, S., Kosiński, P., Wójcik, R., Węglarz, A., Koc, D., & Laurent, O. (2022). Energy efficiency in the polish residential building stock: A literature review. Journal of Building Engineering, 45, 103461. DOI:10.1016/j.jobe.2021.103461.
dc.relation.referencesenKhan, K., Salami, B. A., Iqbal, M., Amin, M. N., Ahmed, F., & Jalal, F. E. (2022). Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models. Materials, 15, 3722. https://doi.org/10.3390/ma15103722.
dc.relation.referencesenCarbon Neutrality Roadmap 2050 https://cembureau.eu/library/reports/2050-carbon-neutrality-roadmap/.
dc.relation.referencesenSanytsky, M., Sobol, K., Shcturmay, M., & Khymko O. (2011). Low Energy Consuming Modified Composite Cements and their Properties. Chemistry & Chemical Technology, 5, 227. https://doi.org/10.23939/chcht05.02.227.
dc.relation.referencesenScrivener, K.L., John, V.M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
dc.relation.referencesenSroda, B. (2020). The cement industry on the road to the Green Deal. Construction, Architecture Technologies, 3, 68–74 (in Polish). bwmeta1.element.baztech-8fe7721f-eadb-432d-b91d-8997cc14e7d6.
dc.relation.referencesenResponsible and visionary: CO2-Roadmap, https://www.zement.at/service/presse/33-2022/378-roadmap
dc.relation.referencesenStevulova, N., Strigac, J., Junak, J., Terpakova, E., & Holub, M. (2021). Incorporation of Cement Bypass Dust in Hydraulic Road Binder. Materials, 14, 41. https://dx.doi.org/10.3390/ma14010041.
dc.relation.referencesenKuterasińska, J., & Król, A. (2016). New types of low-carbon cements with reduced Portland clinker content as a result of ecological actions of cement industry towards sustainable development. Economic and Environmental Studies (E&ES), 16, 3, 403–419. https://www.econstor.eu/bitstream/10419/178925/1/ees_16_3_05.pdf.
dc.relation.referencesenSanytsky, M., Kropyvnytska, T., Fic, S., & Ivashchyshyn, H. (2020). Sustainable low-carbon binders and concretes. E3S Web of Conferences, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007.
dc.relation.referencesenBatog M., Bakalarz J., Synowiec K., & Dziuk D. (2022). The use of multi-component cements in construction. Construction, Architecture Technologies, 3, 66–73 (in Polish) https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5-bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5
dc.relation.referencesenSnellings R., Suraneni P., & Skibsted J. (2023). Future and emerging supplementary cementitious materials. Cement and Concrete Research, 171, 107199. https://doi.org/10.1016/j.cemconres.2023.107199.
dc.relation.referencesenJuenger, M. C. G., Snellings, R., & Bernal, S. A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 122, 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008
dc.relation.referencesenTkaczewska, E. (2019). The influence of cement bypass dust on the properties of cement curing under normal and autoclave conditions. Structure and Environment, 11, 5–22. DOI: 10.30540/sae-2019-001
dc.relation.referencesenAmin, M.N., Hissan, S., Shahzada, K., Khan, K., & Bibi, T. (2019). Pozzolanic Reactivity and the Influence of Rice Husk Ash on Early-Age Autogenous Shrinkage of Concrete. Frontiers in Materials, 6, 150. DOI: 10.3389/fmats.2019.00150.
dc.relation.referencesenOdubela, C. A., & Oluwatobi, G. A. (2022). Properties of Laterized Concrete Incorporating Sawdust Ash as A Partial Replacement for Cement. Journal of Civil Engineering Research & Technology, 4(2), 1–6. DOI: doi.org/10.47363/JCERT/2022(4)128.
dc.relation.referencesenTeixeiraa, E. R., Camõesa, A., & Brancob, F. G. (2019). Valorisation of wood fly ash on concrete. Resources, Conservation & Recycling, 145, 292–310. DOI:10.1016/j.resconrec.2019.02.028.
dc.relation.referencesenSobol, K., Solodkyy, S., Petrovska, N., Belov, S., Hunyak, O., & Hidei, V. (2020). Chemical composition and hydraulic properties of incinerated wastepaper sludge. Chemistry & Chemical Technology, 14(4), 538–544. https://doi.org/10.23939/chcht14.04.538
dc.relation.referencesenHunyak, O., Hidei, V., Sobol, K. & Petrovska, N. (2023). Valorization of Wastepaper Sludge Ash as Supplementary Cementitious Material in Concrete. Lecture Notes in Civil Engineering, 290, 94–100. DOI: 10.1007/978-3-031-14141-6_10.
dc.relation.referencesenNazar, A. M. Md, Abas, N. F., & Othuman Mydin, M. A. (2014). Study on the Utilization of Paper Mill Sludge as Partial Cement Replacement in Concrete. MATEC Web of Conferences, 10, 02001. DOI: 10.1051/matecconf/20141002001.
dc.relation.referencesenYevropeiska biznes asotsiatsiia (2021). Vykorystannia zoloshlakovykh produktiv i hirnychoi porody v dorozhnomu budivnytstvi. Yevropeiskyi dosvid i mozhlyvosti dlia Ukrainy. URL: https://eba.com.ua/wpcontent/uploads/2021/05/White_Paper_Slag-_in_road_construction.pdf
dc.relation.referencesenIzquierdo, M. & Querol, X. (2012). Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology, 94, 54–66. https://doi.org/10.1016/j.coal.2011.10.006.
dc.relation.referencesenCheriaf, M., Cavalcante, J. & Pera, J. (1999). Pozzolanic properties of pulverized coal combustion bottom ash. Cement and Concrete Research, 29, 29 9, 387–1391. https://doi.org/10.1016/S0008-8846(99)00098-8.
dc.relation.referencesenAdinugroho, T. P., Ayuningtyas, U., Anggraeni, P., Febriansyah, H., Susila, M. A. D., Sasongko N. A. & Darmayanti N. T. E. (2022). Life cycle assessment of fly ash bottom ash in coal power plants: A review. IOP Conf. Series: Earth and Environmental Science, 1108, 012035. DOI: 10.1088/1755-1315/1108/1/012035.
dc.relation.referencesenTirkeş, S. (2021). Utilization of wet-handled and dry-handled coal bottom ashes in Portland cement based composites. M.S.-Master of Science, Middle East Technical University. https://hdl.handle.net/11511/94324. Cheeratot, R. & Jaturapitakkul, C. (2004). A Study of Disposed Fly Ash from Landfill to Replace Portland Cement. Waste Management, 24, 7, 701–709. DOI: 10.1016/j.wasman.2004.02.003.
dc.relation.referencesenSaengsov, W., Nguyen, T., Chatchawan, R., & Tangtermsirikul S. (2016). Effect of Moisture Content of Wet Fly Ash on Basic Properties of Mortar and Concrete. Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA, 779–786. DOI: 10.18552/2016/SCMT4S247.
dc.relation.referencesenKrivenko, P., Gots, V., Petropavlovskyi, O., Rudenko, I., Konstantynovskyi, O., & Kovalchuk, A. (2019). Development of solutions concerning regulation of proper deformations in alkali-activated cements. Eastern European Journal of Enterprise Technologies, 5/6, 24–32. DOI: 10.15587/1729-4061.2019.181150.
dc.relation.referencesenZheng, X., & Wu, J. (2021). Early Strength Development of Soft Clay Stabilized by One-Part Ground Granulated Blast Furnace Slag and Fly Ash-Based Geopolymer. Frontiers in Materials, 8, 616430. DOI: 10.3389/fmats.2021.616430.
dc.relation.referencesenLiu, J., Wang, Z., Xie, G., Li, Z., Fan, X., Zhang, W., & Ren, J. (2022). Resource utilization of municipal solid waste incineration fly ash-cement and alkali-activated cementitious materials: A review. Science of The Total Environment, 158254. Doi.org/10.1016/j.scitotenv.2022.158254.
dc.relation.referencesenAkmalaiuly, K., Berdikul, N., Pundienė, I., & Pranckevičienė, J. (2023). The Effect of Mechanical Activation of Fly Ash on Cement-Based Materials Hydration and Hardened State Properties. Materials (Basel),16(8), 2959. doi: 10.3390/ma16082959.
dc.relation.referencesenShi, P., & Huang, B. (2023). Preparation of Cementitious Material with Wet Fly Ash by Hydrothermal Reaction and Calcination. Applied Sciences, 13, 1768. https://doi.org/10.3390/app13031768.
dc.relation.referencesenGuerrero, A., Goñi, S., Campillo, I., & Moragues, A. (2004). Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters. Environmental Science and Technology, 38, 3209–3213. DOI: 10.1021/es0351589.
dc.relation.referencesenDeraman, L. M., Abdullah, M. M. A. B., Ming, L. Y., Hussin, K., Yahya, Z., & Kadir, A. A. (2015). Utilization of bottom ash for Alkali-activated (SI-AL) materials: A review. ARPN Journal of Engineering and Applied Sciences, 10, 8, 8351–8357.
dc.relation.referencesenMazouzi, W., Kacimi, L., Cyr, M., & Clastres, P. (2014). Properties of low temperature belite cements made from aluminosilicate wastes by hydrothermal method. Cement and Concrete Composites, 53, 170–177. https://doi.org/10.1016/j.cemconcomp.2014.07.001.
dc.relation.referencesenNovytskyi, Y., Yatsenko, V., & Topylko, N. (2022). Prerequisites for the implementation of the European experience in the use of ash-slag materials in the construction of highways: A review. Theory and Building Practice, 4, 2, 90–97. https://doi.org/10.23939/jtbp2022.02.090.
dc.relation.referencesenMozghovyi, V. V., Puhach, M. O., Mozghova, L. A., Kutsman, O. M., Chyzhenko, N. P., & Sokoliuk M. Yu. (2014). Napriamky zastosuvannia zoloshlakiv TES u budivnytstvi avtomobilnykh dorih. Visnyk Natsionalnoho transportnoho universytetu, (29 (1)), 199–205 (in Ukraine). http://nbuv.gov.ua/UJRN/Vntu_2014_29(1)__26.
dc.relation.referencesenKhan, K., Ashfaq, M., Iqbal, M., Khan, M A., Amin, M. N., Shalabi, F. I. … Jalal, F. E. (2022). Multi Expression Programming Model for Strength Prediction of Fly-Ash-Treated Alkali-Contaminated Soils. Materials, 15, 4025. https://doi.org/10.3390/ma15114025.
dc.relation.urihttps://doi.org/10.3390/ma15103722
dc.relation.urihttps://cembureau.eu/library/reports/2050-carbon-neutrality-roadmap/
dc.relation.urihttps://doi.org/10.23939/chcht05.02.227
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2018.03.015
dc.relation.urihttps://www.zement.at/service/presse/33-2022/378-roadmap
dc.relation.urihttps://dx.doi.org/10.3390/ma14010041
dc.relation.urihttps://www.econstor.eu/bitstream/10419/178925/1/ees_16_3_05.pdf
dc.relation.urihttps://doi.org/10.1051/e3sconf/202016606007
dc.relation.urihttps://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5-bwmeta1.element.baztech-643bff65-215f-466b-801f-61c02b3f98a5
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2023.107199
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2019.05.008
dc.relation.urihttps://doi.org/10.23939/chcht14.04.538
dc.relation.urihttps://eba.com.ua/wpcontent/uploads/2021/05/White_Paper_Slag-_in_road_construction.pdf
dc.relation.urihttps://doi.org/10.1016/j.coal.2011.10.006
dc.relation.urihttps://doi.org/10.1016/S0008-8846(99)00098-8
dc.relation.urihttps://hdl.handle.net/11511/94324
dc.relation.urihttps://doi.org/10.3390/app13031768
dc.relation.urihttps://doi.org/10.1016/j.cemconcomp.2014.07.001
dc.relation.urihttps://doi.org/10.23939/jtbp2022.02.090
dc.relation.urihttp://nbuv.gov.ua/UJRN/Vntu_2014_29(1)__26
dc.relation.urihttps://doi.org/10.3390/ma15114025
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Sobol K., Marushchak R., 2024
dc.subjectдодатковий цементуючий матеріал
dc.subjectзолошлаковий матеріал
dc.subjectзола-винесення
dc.subjectпортландцемент
dc.subjectвикиди CO2
dc.subjectнизьковуглецева в’яжуча речовина
dc.subjectsupplementary cementitious material
dc.subjectwet-handled coal bottom ash
dc.subjectfly ash
dc.subjectportland cement
dc.subjectCO2-emission
dc.subjectlow-carbon binder
dc.titleOpportunities of wet-handled coal bottom ash us in binding materials: a review
dc.title.alternativeМожливості використання золошлакових продуктів у в’яжучих матеріалах: огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v6n1_Sobol_K-Opportunities_of_wet_handled_17-24.pdf
Size:
391.14 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v6n1_Sobol_K-Opportunities_of_wet_handled_17-24__COVER.png
Size:
441.54 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: