Optimisation of the composition and properties of decorative columns and arches using travertine (shell limestone)
| dc.citation.epage | 20 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Архітектурні дослідження | |
| dc.citation.spage | 9 | |
| dc.contributor.affiliation | Киргизький державний технічний університет ім. І. Раззакова | |
| dc.contributor.affiliation | Киргизький державний технічний університет ім. І. Раззакова | |
| dc.contributor.affiliation | Киргизький державний технічний університет ім. І. Раззакова | |
| dc.contributor.affiliation | Міжнародний університет інноваційних технологій | |
| dc.contributor.affiliation | Міжнародний університет інноваційних технологій | |
| dc.contributor.affiliation | Kyrgyz State Technical University named after I. Razzakov | |
| dc.contributor.affiliation | Kyrgyz State Technical University named after I. Razzakov | |
| dc.contributor.affiliation | Kyrgyz State Technical University named after I. Razzakov | |
| dc.contributor.affiliation | International University of Innovative Technologies | |
| dc.contributor.affiliation | International University of Innovative Technologies | |
| dc.contributor.author | Абдикаликов, Акимбек | |
| dc.contributor.author | Болотов, Таалаібек | |
| dc.contributor.author | Курбанбаєв, Алайбек | |
| dc.contributor.author | Матиєва, Акбермет | |
| dc.contributor.author | Мелібаєв, Содікжон | |
| dc.contributor.author | Abdykalykov, Akymbek | |
| dc.contributor.author | Bolotov, Taalaibek | |
| dc.contributor.author | Kurbanbaev, Alaybek | |
| dc.contributor.author | Matyeva, Akbermet | |
| dc.contributor.author | Melibaev, Sodikzhon | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-24T13:27:11Z | |
| dc.date.created | 2025-11-10 | |
| dc.date.issued | 2025-11-10 | |
| dc.description.abstract | Необхідність підвищення довговічності та естетичної стійкості декоративних архітектурних елементів в умовах кліматичних особливостей Киргизької Республіки обумовлює високу актуальність дослідження властивостей природних будівельних матеріалів, таких як травертин. Метою даної роботи був аналіз фізичних та механічних характеристик травертину та оптимізація його властивостей для ефективного використання у створенні декоративних колон та арок. У процесі дослідження застосовувалися комплексні лабораторні методи, включаючи випробування на міцність при стисканні, водопоглинання, стирання, морозостійкість, а також стійкість до ультрафіолетового випромінювання. В результаті експериментів було досліджено поведінку травертину в умовах змінної вологості та температурних коливань; встановлено, що матеріал має міцність на стиск 45-55 МПа, але при цьому демонструє водопоглинання до 10-15 %, що свідчить про його пористу структуру та необхідність додаткового захисту. Було виявлено, що коефіцієнт стирання варіюється від 0,8 до 1,2 мм, а характеристики міцності знижуються на 15-20 % після 50 циклів заморожування і відтавання. Проведено аналіз впливу гідрофобних та полімерних просочень, який показав дворазове зниження водопоглинання та підвищення морозостійкості матеріалу. Також узагальнено дані про зниження декоративних якостей травертину під дією ультрафіолетового випромінювання та запропоновано технологічні рішення для їх збереження. Практична цінність роботи полягає у розробці рекомендацій щодо обробки травертину для підвищення його експлуатаційних характеристик, що може бути застосовано архітекторами, проектувальниками, реставраторами та спеціалістами будівельної галузі при проектуванні будівель та споруд в умовах різко континентального клімату Киргизстану | |
| dc.description.abstract | The need to enhance the durability and aesthetic stability of decorative architectural elements under the climatic conditions of the Kyrgyz Republic underscores the relevance of researching the properties of natural building materials such as travertine. The aim of this study was to analyse the physical and mechanical characteristics of travertine and optimise its properties for effective use in the design of decorative columns and arches. The research involved comprehensive laboratory methods, including tests for compressive strength, water absorption, abrasion resistance, frost resistance, and ultraviolet (UV) radiation resistance. The experiments examined the behaviour of travertine under variable humidity and temperature fluctuations. It was established that the material has a compressive strength of 45-55 MPa but shows water absorption of up to 10-15%, indicating its porous structure and the need for additional protection. The abrasion coefficient ranged from 0.8 to 1.2 mm, while compressive strength decreased by 15-20% after 50 freeze-thaw cycles. The study of hydrophobic and polymeric impregnations revealed a twofold reduction in water absorption and an increase in frost resistance. The paper also summarises data on the deterioration of travertine’s decorative qualities under UV exposure and proposes technological solutions to preserve them. The practical value of this research lies in the development of recommendations for travertine treatment to improve its performance characteristics. These findings can be applied by architects, designers, restorers, and construction professionals when designing buildings and structures in the sharply continental climate of Kyrgyzstan | |
| dc.format.extent | 9-20 | |
| dc.format.pages | 12 | |
| dc.identifier.citation | Optimisation of the composition and properties of decorative columns and arches using travertine (shell limestone) / Akymbek Abdykalykov, Taalaibek Bolotov, Alaybek Kurbanbaev, Akbermet Matyeva, Sodikzhon Melibaev // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 2. — P. 9–20. | |
| dc.identifier.citation2015 | Optimisation of the composition and properties of decorative columns and arches using travertine (shell limestone) / Abdykalykov A. та ін. // Architectural Studies, Lviv. 2025. Vol 11. No 2. P. 9–20. | |
| dc.identifier.citationenAPA | Abdykalykov, A., Bolotov, T., Kurbanbaev, A., Matyeva, A., & Melibaev, S. (2025). Optimisation of the composition and properties of decorative columns and arches using travertine (shell limestone). Architectural Studies, 11(2), 9-20. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Abdykalykov A., Bolotov T., Kurbanbaev A., Matyeva A., Melibaev S. (2025) Optimisation of the composition and properties of decorative columns and arches using travertine (shell limestone). Architectural Studies (Lviv), vol. 11, no 2, pp. 9-20. | |
| dc.identifier.doi | 10.56318/as/2.2025.09 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/121636 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Архітектурні дослідження, 2 (11), 2025 | |
| dc.relation.ispartof | Architectural Studies, 2 (11), 2025 | |
| dc.relation.references | [1] Adjamskiy, S., Kononenko, G., Podolskyi, R., & Baduk, S. (2022). Studying the influence of orientation and layer thickness on the physico-mechanical properties of Co-Cr-Mo alloy manufactured by the SLM method. Science and Innovation, 18(5), 85-94. doi: 10.15407/scine18.05.085. | |
| dc.relation.references | [2] Alabbasi, M., Agkathidis, A., & Chen, H. (2023). Robotic 3D printing of concrete building components for residential buildings in Saudi Arabia. Automation in Construction, 148, article number 104751. doi: 10.1016/j.autcon.2023.104751. | |
| dc.relation.references | [3] Aratman, C., Özkul, M., Swennen, R., Hollis, C., Erthal, M.M., Claes, H., & Mohammadi, Z. (2020). The giant quaternary Ballik travertine system in the Denizli basin (SW Turkey): A palaeoenvironmental analysis. Quaternaire, 31(2), 91-116. doi: 10.4000/quaternaire.13688. | |
| dc.relation.references | [4] Assakunova, B.T., Abylov, S.A., & Baimenova, G.R. (2018). Gypsum composites using lokal glues and stone travertine waste. Science, New Technologies and Innovations of Kyrgyzstan, 2, 45-47. | |
| dc.relation.references | [5] ASTM C170/C170M-17 “Standard Test Method for Compressive Strength of Dimension Stone”. (2023, December). doi: 10.1520/C0170_C0170M-17. | |
| dc.relation.references | [6] ASTM C97/C97M-18 “Standard Test Methods for Absorption and Bulk Specific Gravity of Dimension Stone”. (2025, May). doi: 10.1520/C0097_C0097M-18. | |
| dc.relation.references | [7] Attenni, M., Bianchini, C., Griffo, M., & Senatore, L.J. (2022). HBIM meta-modelling: 50 (and more) shades of grey. ISPRS International Journal of Geo-Information, 11(9), article number 468. doi: 10.3390/ijgi11090468. | |
| dc.relation.references | [8] Bilousova, A. (2023). The influence of light stabilizers and nanosized particles of silica on the rate of destruction of polymer coatings under the UV radiation. Technologies and Engineering, 24(2), 77-84. doi: 10.30857/2786-5371.2023.2.7. | |
| dc.relation.references | [9] Bozkaya, G., Bozkaya, Ö., & Akın, T. (2024). Stable isotope geochemistry evidences from fossil carbonate and sulfur minerals on the origin of geothermal water, Kızıldere Geothermal Field, Western Turkey. Geochemistry, 84(4), article number 126089. doi: 10.1016/j.chemer.2024.126089. | |
| dc.relation.references | [10] Casazza, M., & Barone, F. (2024). Cultural heritage structures and infrastructures vibration monitoring: Vibration sensors metrological characteristics identification through finite elements modelling and simulation. Acta IMEKO, 13(2), 1-9. doi: 10.21014/actaimeko.v13i2.1800. | |
| dc.relation.references | [11] Çelik, M.Y., & Sert, M. (2020). The importance of “Pavonazzetto marble” (Docimium-Phrygia/Iscehisar-Turkey) since ancient times and its properties as a global heritage stone resource. Environmental Earth Sciences, 79, article number 201. doi: 10.1007/s12665-020-08943-2. | |
| dc.relation.references | [12] Conforti, C., Colonnese, F., D’Amelio, M.G., & Grieco, L. (2021). Designing in real scale: The practice and afterlife of full-size architectural models from renaissance to fascist Italy. Architecture and Culture, 9(3), 442-463. doi: 10.1080/20507828.2021.1876490. | |
| dc.relation.references | [13] Deshko, V., Bilous, I., Sukhodub, I., Hetmanchuk, H., & Kramarenko, S. (2024). Analysis of changes in outdoor air temperature in Ukrainian regions with special focus on possible extreme conditions. Technologies and Engineering, 25(5), 45-56. doi: 10.30857/2786-5371.2024.5.5. | |
| dc.relation.references | [14] Duarte, G., Brown, N., Memari, A., & Duarte, J.P. (2021). Learning from historical structures under compression for concrete 3D printing construction. Journal of Building Engineering, 43, article number 103009. doi: 10.1016/j.jobe.2021.103009. | |
| dc.relation.references | [15] EN 12371:2010 “Natural Stone Test Methods – Determination of Frost Resistance”. (2010, March). Retrieved from https://surl.li/iupfyv. | |
| dc.relation.references | [16] EN 12372:2022 “Natural Stone Test Methods – Determination of Flexural Strength Under Concentrated Load”. (2022, March). Retrieved from https://standards.iteh.ai/catalog/standards/cen/fada8a76-7602-4396-94e2-f5a5527bc764/en-12372-2022?srsltid=AfmBOooopP45sj9ckATYgQQsSce1Fa6bXktHYq-m5zz8pUDQij_Cln1H. | |
| dc.relation.references | [17] EN 1926:2006 “Natural Stone Test Methods – Determination of Uniaxial Compressive Strength”. (2008, December). Retrieved from https://standards.iteh.ai/catalog/standards/cen/227bc05a-f18c-474f-8178-fd6f613fe740/en-1926-2006?srsltid=AfmBOorA0V1bNtHhxuvTbzwnKv8a7yYnbnHlY9ERzvqiUhdsTDockSxI. | |
| dc.relation.references | [18] Erdinç, S.Y. (2023). A timeless journey of strength and beauty: The potentials of the use of stone in architecture. Journal of Design for Resilience in Architecture and Planning, 4(3), 317-338. doi: 10.47818/DRArch.2023.v4i3100. | |
| dc.relation.references | [19] Ermolaev, G.V., Martynenko, V.A., Olekseenko, S.V., Labartkava, A.V., & Matvienko, M.V. (2017). Effect of the rigid interlayer thickness on the stress-strain state of metal-graphite assemblies under thermal loading. Strength of Materials, 49(3), 422-428. doi: 10.1007/s11223-017-9882-4. | |
| dc.relation.references | [20] Fratini, F., Rescic, S., & Pittaluga, D. (2022). Serpentinite and ophicalcite in the architecture of eastern Liguria and as decoration of Tuscan religious buildings. Resources Policy, 75, article number 102505. doi: 10.1016/j.resourpol.2021.102505. | |
| dc.relation.references | [21] Grawehr, M. (2022). Travertine in Rome: Its style and meaning. In A. Haug, A. Hielscher & M. Lauritsen (Eds.), Materiality in Roman art and architecture: Aesthetics, semantics and function (pp. 162-179). Berlin, Boston: De Gruyter. doi: 10.1515/9783110764734-010. | |
| dc.relation.references | [22] Issabayev, G.A. (2022). Cantilever architectural structures of modern buildings and structures with a unique image of overcoming gravity. Bulletin of Kazakh Leading Academy of Architecture and Construction, 86(4), 7-18. doi: 10.51488/1680-080X/2022.4-01. | |
| dc.relation.references | [23] Lapshyn, О., & Yaroshenko, H. (2023). Engineering geology and geotechnics in the context of ensuring the sustainability of buildings, structures and communications. Mining Journal of Kryvyi Rih National University, 57(1), 95-100. | |
| dc.relation.references | [24] Marchuk, A.V. (2021). Analytical solution of the problem on the thermally stressed state of functionally graded plates based on the 3D elasticity theory. Composites: Mechanics, Computations, Applications, 12(4), 37-62. doi: 10.1615/CompMechComputApplIntJ.2021038154. | |
| dc.relation.references | [25] Maričić, A., Briševac, Z., Hrženjak, P., & Jezidžić, H. (2023). Natural building stone in the construction and renovation of the Zagreb Cathedral. Mining-Geology-Petroleum Journal, 38(3), 29-42. doi: 10.17794/rgn.2023.3.3. | |
| dc.relation.references | [26] Nadoomi, R., Sharghi, A., Nakhaei, S., & Azadian, R. (2023). Regional materials and environmental sustainability in hot and humid climates: a study on Boushehr’s vernacular houses. International Journal of Architectural Engineering & Urban Planning, 33(4). doi: 10.22068/ijaup.713. | |
| dc.relation.references | [27] Özkul, M., Gül, A., Koralay, T., Özen, H., Semiz, B., & Duman, B. (2024). Denizli travertine: A global heritage stone resource nominee from Western Türkiye. Geoheritage, 16, article number 67. doi: 10.1007/s12371-024-00970-w. | |
| dc.relation.references | [28] Pescari, S., Budău, L., & Vîlceanu, C.-B. (2023). Rehabilitation and restauration of the main façade of historical masonry building – Romanian National Opera Timisoara. Case Studies in Construction Materials, 18, article number e01838. doi: 10.1016/j.cscm.2023.e01838. | |
| dc.relation.references | [29] Rescic, S., Fratini, F., Cuzman, O.A., & Sacchi, B. (2024). Historical use of travertine in the Tuscan architecture (Italy). Heritage, 7(1), 338-365. doi: 10.3390/heritage7010017. | |
| dc.relation.references | [30] Samarakoon, K.G.A.U., Chaminda, S.P., Jayawardena, C.L., Dassanayake, A.B.N., Kondage, Y.S., & Kannangara, K.A.T.T. (2023). A review of dimension stone extraction methods. Mining, 3(3), 516-531. doi: 10.3390/mining3030029. | |
| dc.relation.references | [31] Sánchez-Cortez, J.L., Fuentes-Campuzano, O., & Rosero-Lozano, J. (2022). Determination of disturbance levels in karstic areas with application of qualitative indicators: Case studies in municipalities of Archidona and Pedro Carbo (Ecuador). International Journal of Geoheritage and Parks, 10(3), 400-416. doi: 10.1016/j.ijgeop.2022.08.005. | |
| dc.relation.references | [32] Santi, P., Tramontana, M., Tonelli, G., Renzulli, A., & Veneri, F. (2021). The historic centre of Urbino, UNESCO World Heritage (Marche Region, Italy): An urban-geological itinerary across the building and ornamental stones. Geoheritage, 13, article number 86. doi: 10.1007/s12371-021-00606-3. | |
| dc.relation.references | [33] Sarıışık, G., Özkan, E., Kundak, E., & Akdaş, H. (2016). Classification of parameters affecting impact resistance of natural stones. Journal of Testing and Evaluation, 44(4), 1650-1660. doi: 10.1520/JTE20140276. | |
| dc.relation.references | [34] Tagybayev, A., Zhangabay, N., Suleimenov, U., Avramov, K., Uspenskyi, B., & Umbitaliyev, A. (2023). Revealing patterns of thermophysical parameters in the designed energy-saving structures for external fencing with air channels. Eastern-European Journal of Enterprise Technologies, 4(8(124)), 32-43. doi: 10.15587/1729-4061.2023.286078. | |
| dc.relation.references | [35] Tasán Cruz, D., Villoria Sáez, P., González Cortina, M., Asadi Ardebili, A., & Atanes-Sánchez, E. (2024). Mechanical characterization of gypsum-based composites with single-use sling waste fibers from construction and demolition waste. Journal of Materials in Civil Engineering, 36(5), article number 04024057. doi: 10.1061/JMCEE7.MTENG-15873. | |
| dc.relation.references | [36] Usanmaz, U.O. (2022). A glimpse into the origins of roman concrete domes. Journal of Akdeniz University Social Sciences Institute, 11, 30-52. | |
| dc.relation.references | [37] Usubaliev, Zh., & Elikbaev, K.T. (2024). Analysis of tools and implements for the extraction and processing of natural stone. Science. Education. Engineering, 1, 72-80. doi: 10.54834/.vi1.282. | |
| dc.relation.references | [38] Wang, H., Du, W., Zhao, Y., Wang, Y., Hao, R., & Yang, M. (2021). Joints for treelike column structures based on generative design and additive manufacturing. Journal of Constructional Steel Research, 184, article number 106794. doi: 10.1016/j.jcsr.2021.106794. | |
| dc.relation.references | [39] Xiaojian, W., & Yuewen, Y. (2021). Construction method of modern architecture under the background of the times. Journal of Landscape Research, 13(5), 15-17. | |
| dc.relation.references | [40] Xue, M., & Bulhakova, T. (2024). Peculiarities and development strategies of architectural decorative art in the ancient Huizhou region. Art and Design, 7(3), 121-133. doi: 10.30857/2617-0272.2024.3.10. | |
| dc.relation.references | [41] Yıldırım, E. (2022). Topology optimization in architecture practices. In B.Ö. Parlak & F.Y. Gürani (Eds.), Research & reviews in architecture, planning and design (pp. 117-137). Ankara: Gece. | |
| dc.relation.references | [42] Yıldırım, G., & Erdoğan, N. (2024). An analysis of the use of natural stone and marble in contemporary architectural designs. DEPARCH Journal of Design Planning and Aesthetics Research, 3(2), 241-263. doi: 10.55755/DepArch.2024.36. | |
| dc.relation.references | [43] Zhakanov, A.N. (2023). Stone deposits – natural porous filler for light concrete. In E. Atasoy (Ed.), Global challenges for global science III. Proceedings (pp. 146-150). Bursa: Eurasian Center of Innovative Development “DARA”. | |
| dc.relation.references | [44] Zhang, C., Tao, M.-X., Wang, C., & Fan, J.-S. (2024). End-to-end generation of structural topology for complex architectural layouts with graph neural networks. Computer-Aided Civil and Infrastructure Engineering, 39(5), 756-775. doi: 10.1111/mice.13098. | |
| dc.relation.referencesen | [1] Adjamskiy, S., Kononenko, G., Podolskyi, R., & Baduk, S. (2022). Studying the influence of orientation and layer thickness on the physico-mechanical properties of Co-Cr-Mo alloy manufactured by the SLM method. Science and Innovation, 18(5), 85-94. doi: 10.15407/scine18.05.085. | |
| dc.relation.referencesen | [2] Alabbasi, M., Agkathidis, A., & Chen, H. (2023). Robotic 3D printing of concrete building components for residential buildings in Saudi Arabia. Automation in Construction, 148, article number 104751. doi: 10.1016/j.autcon.2023.104751. | |
| dc.relation.referencesen | [3] Aratman, C., Özkul, M., Swennen, R., Hollis, C., Erthal, M.M., Claes, H., & Mohammadi, Z. (2020). The giant quaternary Ballik travertine system in the Denizli basin (SW Turkey): A palaeoenvironmental analysis. Quaternaire, 31(2), 91-116. doi: 10.4000/quaternaire.13688. | |
| dc.relation.referencesen | [4] Assakunova, B.T., Abylov, S.A., & Baimenova, G.R. (2018). Gypsum composites using lokal glues and stone travertine waste. Science, New Technologies and Innovations of Kyrgyzstan, 2, 45-47. | |
| dc.relation.referencesen | [5] ASTM P.170/P.170M-17 "Standard Test Method for Compressive Strength of Dimension Stone". (2023, December). doi: 10.1520/P.0170_C0170M-17. | |
| dc.relation.referencesen | [6] ASTM P.97/P.97M-18 "Standard Test Methods for Absorption and Bulk Specific Gravity of Dimension Stone". (2025, May). doi: 10.1520/P.0097_C0097M-18. | |
| dc.relation.referencesen | [7] Attenni, M., Bianchini, C., Griffo, M., & Senatore, L.J. (2022). HBIM meta-modelling: 50 (and more) shades of grey. ISPRS International Journal of Geo-Information, 11(9), article number 468. doi: 10.3390/ijgi11090468. | |
| dc.relation.referencesen | [8] Bilousova, A. (2023). The influence of light stabilizers and nanosized particles of silica on the rate of destruction of polymer coatings under the UV radiation. Technologies and Engineering, 24(2), 77-84. doi: 10.30857/2786-5371.2023.2.7. | |
| dc.relation.referencesen | [9] Bozkaya, G., Bozkaya, Ö., & Akın, T. (2024). Stable isotope geochemistry evidences from fossil carbonate and sulfur minerals on the origin of geothermal water, Kızıldere Geothermal Field, Western Turkey. Geochemistry, 84(4), article number 126089. doi: 10.1016/j.chemer.2024.126089. | |
| dc.relation.referencesen | [10] Casazza, M., & Barone, F. (2024). Cultural heritage structures and infrastructures vibration monitoring: Vibration sensors metrological characteristics identification through finite elements modelling and simulation. Acta IMEKO, 13(2), 1-9. doi: 10.21014/actaimeko.v13i2.1800. | |
| dc.relation.referencesen | [11] Çelik, M.Y., & Sert, M. (2020). The importance of "Pavonazzetto marble" (Docimium-Phrygia/Iscehisar-Turkey) since ancient times and its properties as a global heritage stone resource. Environmental Earth Sciences, 79, article number 201. doi: 10.1007/s12665-020-08943-2. | |
| dc.relation.referencesen | [12] Conforti, C., Colonnese, F., D’Amelio, M.G., & Grieco, L. (2021). Designing in real scale: The practice and afterlife of full-size architectural models from renaissance to fascist Italy. Architecture and Culture, 9(3), 442-463. doi: 10.1080/20507828.2021.1876490. | |
| dc.relation.referencesen | [13] Deshko, V., Bilous, I., Sukhodub, I., Hetmanchuk, H., & Kramarenko, S. (2024). Analysis of changes in outdoor air temperature in Ukrainian regions with special focus on possible extreme conditions. Technologies and Engineering, 25(5), 45-56. doi: 10.30857/2786-5371.2024.5.5. | |
| dc.relation.referencesen | [14] Duarte, G., Brown, N., Memari, A., & Duarte, J.P. (2021). Learning from historical structures under compression for concrete 3D printing construction. Journal of Building Engineering, 43, article number 103009. doi: 10.1016/j.jobe.2021.103009. | |
| dc.relation.referencesen | [15] EN 12371:2010 "Natural Stone Test Methods – Determination of Frost Resistance". (2010, March). Retrieved from https://surl.li/iupfyv. | |
| dc.relation.referencesen | [16] EN 12372:2022 "Natural Stone Test Methods – Determination of Flexural Strength Under Concentrated Load". (2022, March). Retrieved from https://standards.iteh.ai/catalog/standards/cen/fada8a76-7602-4396-94e2-f5a5527bc764/en-12372-2022?srsltid=AfmBOooopP45sj9ckATYgQQsSce1Fa6bXktHYq-m5zz8pUDQij_Cln1H. | |
| dc.relation.referencesen | [17] EN 1926:2006 "Natural Stone Test Methods – Determination of Uniaxial Compressive Strength". (2008, December). Retrieved from https://standards.iteh.ai/catalog/standards/cen/227bc05a-f18c-474f-8178-fd6f613fe740/en-1926-2006?srsltid=AfmBOorA0V1bNtHhxuvTbzwnKv8a7yYnbnHlY9ERzvqiUhdsTDockSxI. | |
| dc.relation.referencesen | [18] Erdinç, S.Y. (2023). A timeless journey of strength and beauty: The potentials of the use of stone in architecture. Journal of Design for Resilience in Architecture and Planning, 4(3), 317-338. doi: 10.47818/DRArch.2023.v4i3100. | |
| dc.relation.referencesen | [19] Ermolaev, G.V., Martynenko, V.A., Olekseenko, S.V., Labartkava, A.V., & Matvienko, M.V. (2017). Effect of the rigid interlayer thickness on the stress-strain state of metal-graphite assemblies under thermal loading. Strength of Materials, 49(3), 422-428. doi: 10.1007/s11223-017-9882-4. | |
| dc.relation.referencesen | [20] Fratini, F., Rescic, S., & Pittaluga, D. (2022). Serpentinite and ophicalcite in the architecture of eastern Liguria and as decoration of Tuscan religious buildings. Resources Policy, 75, article number 102505. doi: 10.1016/j.resourpol.2021.102505. | |
| dc.relation.referencesen | [21] Grawehr, M. (2022). Travertine in Rome: Its style and meaning. In A. Haug, A. Hielscher & M. Lauritsen (Eds.), Materiality in Roman art and architecture: Aesthetics, semantics and function (pp. 162-179). Berlin, Boston: De Gruyter. doi: 10.1515/9783110764734-010. | |
| dc.relation.referencesen | [22] Issabayev, G.A. (2022). Cantilever architectural structures of modern buildings and structures with a unique image of overcoming gravity. Bulletin of Kazakh Leading Academy of Architecture and Construction, 86(4), 7-18. doi: 10.51488/1680-080X/2022.4-01. | |
| dc.relation.referencesen | [23] Lapshyn, O., & Yaroshenko, H. (2023). Engineering geology and geotechnics in the context of ensuring the sustainability of buildings, structures and communications. Mining Journal of Kryvyi Rih National University, 57(1), 95-100. | |
| dc.relation.referencesen | [24] Marchuk, A.V. (2021). Analytical solution of the problem on the thermally stressed state of functionally graded plates based on the 3D elasticity theory. Composites: Mechanics, Computations, Applications, 12(4), 37-62. doi: 10.1615/CompMechComputApplIntJ.2021038154. | |
| dc.relation.referencesen | [25] Maričić, A., Briševac, Z., Hrženjak, P., & Jezidžić, H. (2023). Natural building stone in the construction and renovation of the Zagreb Cathedral. Mining-Geology-Petroleum Journal, 38(3), 29-42. doi: 10.17794/rgn.2023.3.3. | |
| dc.relation.referencesen | [26] Nadoomi, R., Sharghi, A., Nakhaei, S., & Azadian, R. (2023). Regional materials and environmental sustainability in hot and humid climates: a study on Boushehr’s vernacular houses. International Journal of Architectural Engineering & Urban Planning, 33(4). doi: 10.22068/ijaup.713. | |
| dc.relation.referencesen | [27] Özkul, M., Gül, A., Koralay, T., Özen, H., Semiz, B., & Duman, B. (2024). Denizli travertine: A global heritage stone resource nominee from Western Türkiye. Geoheritage, 16, article number 67. doi: 10.1007/s12371-024-00970-w. | |
| dc.relation.referencesen | [28] Pescari, S., Budău, L., & Vîlceanu, C.-B. (2023). Rehabilitation and restauration of the main façade of historical masonry building – Romanian National Opera Timisoara. Case Studies in Construction Materials, 18, article number e01838. doi: 10.1016/j.cscm.2023.e01838. | |
| dc.relation.referencesen | [29] Rescic, S., Fratini, F., Cuzman, O.A., & Sacchi, B. (2024). Historical use of travertine in the Tuscan architecture (Italy). Heritage, 7(1), 338-365. doi: 10.3390/heritage7010017. | |
| dc.relation.referencesen | [30] Samarakoon, K.G.A.U., Chaminda, S.P., Jayawardena, C.L., Dassanayake, A.B.N., Kondage, Y.S., & Kannangara, K.A.T.T. (2023). A review of dimension stone extraction methods. Mining, 3(3), 516-531. doi: 10.3390/mining3030029. | |
| dc.relation.referencesen | [31] Sánchez-Cortez, J.L., Fuentes-Campuzano, O., & Rosero-Lozano, J. (2022). Determination of disturbance levels in karstic areas with application of qualitative indicators: Case studies in municipalities of Archidona and Pedro Carbo (Ecuador). International Journal of Geoheritage and Parks, 10(3), 400-416. doi: 10.1016/j.ijgeop.2022.08.005. | |
| dc.relation.referencesen | [32] Santi, P., Tramontana, M., Tonelli, G., Renzulli, A., & Veneri, F. (2021). The historic centre of Urbino, UNESCO World Heritage (Marche Region, Italy): An urban-geological itinerary across the building and ornamental stones. Geoheritage, 13, article number 86. doi: 10.1007/s12371-021-00606-3. | |
| dc.relation.referencesen | [33] Sarıışık, G., Özkan, E., Kundak, E., & Akdaş, H. (2016). Classification of parameters affecting impact resistance of natural stones. Journal of Testing and Evaluation, 44(4), 1650-1660. doi: 10.1520/JTE20140276. | |
| dc.relation.referencesen | [34] Tagybayev, A., Zhangabay, N., Suleimenov, U., Avramov, K., Uspenskyi, B., & Umbitaliyev, A. (2023). Revealing patterns of thermophysical parameters in the designed energy-saving structures for external fencing with air channels. Eastern-European Journal of Enterprise Technologies, 4(8(124)), 32-43. doi: 10.15587/1729-4061.2023.286078. | |
| dc.relation.referencesen | [35] Tasán Cruz, D., Villoria Sáez, P., González Cortina, M., Asadi Ardebili, A., & Atanes-Sánchez, E. (2024). Mechanical characterization of gypsum-based composites with single-use sling waste fibers from construction and demolition waste. Journal of Materials in Civil Engineering, 36(5), article number 04024057. doi: 10.1061/JMCEE7.MTENG-15873. | |
| dc.relation.referencesen | [36] Usanmaz, U.O. (2022). A glimpse into the origins of roman concrete domes. Journal of Akdeniz University Social Sciences Institute, 11, 30-52. | |
| dc.relation.referencesen | [37] Usubaliev, Zh., & Elikbaev, K.T. (2024). Analysis of tools and implements for the extraction and processing of natural stone. Science. Education. Engineering, 1, 72-80. doi: 10.54834/.vi1.282. | |
| dc.relation.referencesen | [38] Wang, H., Du, W., Zhao, Y., Wang, Y., Hao, R., & Yang, M. (2021). Joints for treelike column structures based on generative design and additive manufacturing. Journal of Constructional Steel Research, 184, article number 106794. doi: 10.1016/j.jcsr.2021.106794. | |
| dc.relation.referencesen | [39] Xiaojian, W., & Yuewen, Y. (2021). Construction method of modern architecture under the background of the times. Journal of Landscape Research, 13(5), 15-17. | |
| dc.relation.referencesen | [40] Xue, M., & Bulhakova, T. (2024). Peculiarities and development strategies of architectural decorative art in the ancient Huizhou region. Art and Design, 7(3), 121-133. doi: 10.30857/2617-0272.2024.3.10. | |
| dc.relation.referencesen | [41] Yıldırım, E. (2022). Topology optimization in architecture practices. In B.Ö. Parlak & F.Y. Gürani (Eds.), Research & reviews in architecture, planning and design (pp. 117-137). Ankara: Gece. | |
| dc.relation.referencesen | [42] Yıldırım, G., & Erdoğan, N. (2024). An analysis of the use of natural stone and marble in contemporary architectural designs. DEPARCH Journal of Design Planning and Aesthetics Research, 3(2), 241-263. doi: 10.55755/DepArch.2024.36. | |
| dc.relation.referencesen | [43] Zhakanov, A.N. (2023). Stone deposits – natural porous filler for light concrete. In E. Atasoy (Ed.), Global challenges for global science III. Proceedings (pp. 146-150). Bursa: Eurasian Center of Innovative Development "DARA". | |
| dc.relation.referencesen | [44] Zhang, C., Tao, M.-X., Wang, C., & Fan, J.-S. (2024). End-to-end generation of structural topology for complex architectural layouts with graph neural networks. Computer-Aided Civil and Infrastructure Engineering, 39(5), 756-775. doi: 10.1111/mice.13098. | |
| dc.relation.uri | https://surl.li/iupfyv | |
| dc.relation.uri | https://standards.iteh.ai/catalog/standards/cen/fada8a76-7602-4396-94e2-f5a5527bc764/en-12372-2022?srsltid=AfmBOooopP45sj9ckATYgQQsSce1Fa6bXktHYq-m5zz8pUDQij_Cln1H | |
| dc.relation.uri | https://standards.iteh.ai/catalog/standards/cen/227bc05a-f18c-474f-8178-fd6f613fe740/en-1926-2006?srsltid=AfmBOorA0V1bNtHhxuvTbzwnKv8a7yYnbnHlY9ERzvqiUhdsTDockSxI | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2025 | |
| dc.subject | декоративні архітектурні елементи | |
| dc.subject | фізико-механічні властивості | |
| dc.subject | підвищення довговічності матеріалів | |
| dc.subject | будівельні матеріали і клімат | |
| dc.subject | decorative architectural elements | |
| dc.subject | physical and mechanical properties | |
| dc.subject | material durability improvement | |
| dc.subject | construction materials and climate | |
| dc.subject.udc | 692.7.012 | |
| dc.subject.udc | 691.22 | |
| dc.title | Optimisation of the composition and properties of decorative columns and arches using travertine (shell limestone) | |
| dc.title.alternative | Оптимізація складу та властивостей декоративних колон та арок з використанням травертину (черепашника) | |
| dc.type | Article |