The Network Load Balancer in Decentrilized Systems

dc.citation.epage34
dc.citation.issue1
dc.citation.spage25
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKlymyshyn, Nazarii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-13T09:56:55Z
dc.date.available2024-02-13T09:56:55Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractThis article explores the implementation of network load balancing in decentralized systems using OpenWrt, Quality of Service (QoS), and traffic balancing techniques. The increasing demand for high-quality net- work services and the surge in network traffic requires the adoption of more efficient load-balancing methods to maintain network performance. This paper discusses the use of OpenWrt, an open-source firmware for network routers, to configure and manage network traffic. The article also covers the implementation of QoS and traffic balancing techniques to optimize network performance and reduce network congestion. The study employs iperf3 to evaluate network performance and demonstrates the effectiveness of the proposed network load-balancing approach. The index terms include OpenWrt, QoS, balancing, traffic, and iperf3.
dc.format.extent25-34
dc.format.pages10
dc.identifier.citationKlymyshyn N. The Network Load Balancer in Decentrilized Systems / Nazarii Klymyshyn // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 1. — P. 25–34.
dc.identifier.citationenKlymyshyn N. The Network Load Balancer in Decentrilized Systems / Nazarii Klymyshyn // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 1. — P. 25–34.
dc.identifier.doidoi.org/10.23939/acps2023.01.025
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61325
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofAdvances in Cyber-Physical Systems, 1 (8), 2023
dc.relation.referencesLiu X., Qian C., Hatcher W. G., Xu H., Liao W., Yu W., (2019). “Secure Internet of Things (IoT)-Based Smart- World Critical Infrastructures: Survey, Case Study and Research Opportunitie”, in IEEE Access, vol. 8, pp. 11825–11832, DOI: 10.1109/ACCESS.2019.2920763
dc.relation.referencesDamasceno J., Dantas J., Araujo J., (2022). “Network Edge Router Performance Evaluation: An OpenWrt-Based Ap- proach”, 2022 17th Iberian Conference on Information Sys- tems and Technologies (CISTI), Madrid, Spain, pp. 170– 173, DOI: 10.23919/CISTI54924.2022.9820027
dc.relation.referencesKafetzis D., Vassilaras S., Vardoulias G., Koutsopoulos I., (2022). “Software-Defined Networking Meets Soft- ware-Defined Radio in Mobile ad hoc Networks: State of the Art and Future Directions”, in IEEE Access, vol. 10, pp. 2305–2312, DOI: 10.1109/ACCESS.2022.3144072
dc.relation.referencesZhang P., Xie K., Kou C., Huang X., Wang A., Sun Q., (2019). “A Practical Traffic Control Scheme With Load Balancing Based on PCE Architecture”, in IEEE Access, vol. 7, pp. 1935–1942, DOI: 10.1109/ACCESS.2019.2902610
dc.relation.referencesLemeshko O., Yevdokymenko M., Shapoval M., (2021). “Routing Model with Load Balancing on the Traffic En- gineering Principles based on Information Security Risks”, 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technolo- gy (PIC S&T), Kharkiv, Ukraine, pp. 114–126, DOI: 10.1109/PICST54195.2021.9772193
dc.relation.referencesTorres R., Fortes S., Baena E., Barco R., (2021). “Social- Aware Load Balancing System for Crowds in Cellular Networks”, in IEEE Access, vol. 9, pp. 183–194, DOI: 10.1109/ACCESS.2021.3100459
dc.relation.referencesLim J., Yoo J., Won-Ki H. J., (2021). “Reinforcement Learning based Load Balancing for Data Center Net- works”, IEEE 7th International Conference on Network Softwarization (NetSoft), Tokyo, Japan, pp. 14–29, DOI: 10.1109/NetSoft51509.2021.94925662
dc.relation.referencesBinh L. H., Duong T., (2021). “Load balancing routing under constraints of quality of transmission in mesh wire- less network based on software defined networking”, in Journal of Communications and Networks, vol. 23, is- sue 1, pp. 483–494, DOI: 10.23919/JCN.2021.000004
dc.relation.referencesKarnani S., Shakya H. K., (2021). “Leveraging SDN for Load Balancing on Campus Network (CN)”, 13th Inter- national Conference on Computational Intelligence and Communication Networks (CICN), Lima, Peru, pp. 324– 338, DOI: 10.1109/CICN51697.2021.9574640
dc.relation.referencesPang S., Chen X., Zeng D., (2021). “Research on Dy- namic Load Balancing of Data Center Network Based on SDN Architecture”, GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan, pp. 324–338, DOI: 10.1109/GLOBECOM42002.2020.9348059
dc.relation.referencesTsiunyk B., Muliarevych O., (2022). "Autonomous Face Detection System from Real-time Video Streaming for Ensuring the Intelligence Security System," Advances in Cyber-Physical Systems, vol. 7, no. 2, pp. 156–162, DOI: https://doi.org/10.23939/acps2022.02.156
dc.relation.referencesenLiu X., Qian C., Hatcher W. G., Xu H., Liao W., Yu W., (2019). "Secure Internet of Things (IoT)-Based Smart- World Critical Infrastructures: Survey, Case Study and Research Opportunitie", in IEEE Access, vol. 8, pp. 11825–11832, DOI: 10.1109/ACCESS.2019.2920763
dc.relation.referencesenDamasceno J., Dantas J., Araujo J., (2022). "Network Edge Router Performance Evaluation: An OpenWrt-Based Ap- proach", 2022 17th Iberian Conference on Information Sys- tems and Technologies (CISTI), Madrid, Spain, pp. 170– 173, DOI: 10.23919/CISTI54924.2022.9820027
dc.relation.referencesenKafetzis D., Vassilaras S., Vardoulias G., Koutsopoulos I., (2022). "Software-Defined Networking Meets Soft- ware-Defined Radio in Mobile ad hoc Networks: State of the Art and Future Directions", in IEEE Access, vol. 10, pp. 2305–2312, DOI: 10.1109/ACCESS.2022.3144072
dc.relation.referencesenZhang P., Xie K., Kou C., Huang X., Wang A., Sun Q., (2019). "A Practical Traffic Control Scheme With Load Balancing Based on PCE Architecture", in IEEE Access, vol. 7, pp. 1935–1942, DOI: 10.1109/ACCESS.2019.2902610
dc.relation.referencesenLemeshko O., Yevdokymenko M., Shapoval M., (2021). "Routing Model with Load Balancing on the Traffic En- gineering Principles based on Information Security Risks", 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technolo- gy (PIC S&T), Kharkiv, Ukraine, pp. 114–126, DOI: 10.1109/PICST54195.2021.9772193
dc.relation.referencesenTorres R., Fortes S., Baena E., Barco R., (2021). "Social- Aware Load Balancing System for Crowds in Cellular Networks", in IEEE Access, vol. 9, pp. 183–194, DOI: 10.1109/ACCESS.2021.3100459
dc.relation.referencesenLim J., Yoo J., Won-Ki H. J., (2021). "Reinforcement Learning based Load Balancing for Data Center Net- works", IEEE 7th International Conference on Network Softwarization (NetSoft), Tokyo, Japan, pp. 14–29, DOI: 10.1109/NetSoft51509.2021.94925662
dc.relation.referencesenBinh L. H., Duong T., (2021). "Load balancing routing under constraints of quality of transmission in mesh wire- less network based on software defined networking", in Journal of Communications and Networks, vol. 23, is- sue 1, pp. 483–494, DOI: 10.23919/JCN.2021.000004
dc.relation.referencesenKarnani S., Shakya H. K., (2021). "Leveraging SDN for Load Balancing on Campus Network (CN)", 13th Inter- national Conference on Computational Intelligence and Communication Networks (CICN), Lima, Peru, pp. 324– 338, DOI: 10.1109/CICN51697.2021.9574640
dc.relation.referencesenPang S., Chen X., Zeng D., (2021). "Research on Dy- namic Load Balancing of Data Center Network Based on SDN Architecture", GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan, pp. 324–338, DOI: 10.1109/GLOBECOM42002.2020.9348059
dc.relation.referencesenTsiunyk B., Muliarevych O., (2022). "Autonomous Face Detection System from Real-time Video Streaming for Ensuring the Intelligence Security System," Advances in Cyber-Physical Systems, vol. 7, no. 2, pp. 156–162, DOI: https://doi.org/10.23939/acps2022.02.156
dc.relation.urihttps://doi.org/10.23939/acps2022.02.156
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Klymyshyn N., 2023
dc.subjectOpenWrt
dc.subjectQoS
dc.subjectbalancing
dc.subjecttraffic
dc.subjectiperf3
dc.titleThe Network Load Balancer in Decentrilized Systems
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v8n1_Klymyshyn_N-The_Network_Load_Balancer_25-34.pdf
Size:
3.34 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v8n1_Klymyshyn_N-The_Network_Load_Balancer_25-34__COVER.png
Size:
464.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: